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1.0 PROJECT GOALS 
This effort is based on a quantum computer simulator designed and developed 
by GE Global Research (GEGR) and Lockheed Martin (LM) from 2002 through 
2004.  The simulator, Quantum eXpress (QX), is capable of accurately simulating 
any quantum algorithm on any quantum hardware device and is capable of 
simulating errors from both hardware device imperfections and decoherence. 

1.1 Enhance Existing Quantum Computer Simulator 
The first objective of this research was to enhance QX, improving its efficiency 
and increasing its functionality.  These enhancements began with researching 
improvements in the matrix multiplication algorithms used for simulating gate 
operations.  Next, GEGR ported QX to Rome Labs’ high performance-computing 
environment to significantly increase the performance of the system and the 
number of qubits that can be simulated by exploiting parallelism.  Finally, QX was 
enhanced to simulate, in parallel, the algorithm's execution in both ideal and 
actual circumstances.  Representing the state of the system under both 
conditions and visualizing the difference at each step can provide important 
capabilities for studying the effects of errors and error propagation in a quantum 
system.  Increasing the simulator’s functionality and improving its performance 
through these approaches will enable the investigation of error correction 
schemes, which will allow researchers to quantify the amount of error correction 
required to develop a large-scale quantum computer with high fidelity. 

1.2 Verify Simulator’s Accuracy Against Experimental Data 
The second goal of this project was to verify the simulator’s accuracy by 
comparing its results to published data from experimental quantum computers.  
Ion trap quantum computers were chosen for the comparison, for two main 
reasons.  First, they are one of the most promising implementations of quantum 
computers, with a vigorous research community.  Second, the existing Quantum 
eXpress simulations were based on nuclear magnetic resonance, and testing 
against ion trap experiments would both be an independent validation and extend 
the existing library of simulations. 
 
The main steps involved in this validation were: 

• Identification of published experiments 
• Acquisition of experimental data 
• Modeling of the experiments in Quantum eXpress 
• Comparison of the simulation and ideal results 
• Comparison of the simulation and experimental results 

1.3 Simulate Quantum Simulator on an FPGA 
The final goal of this effort was to research alternative hardware platforms to 
improve the performance of the quantum computer simulator.  The application of 
Field Programmable Gate Arrays (FPGAs) to this problem could significantly 
increase both the speed of quantum simulation runs and the number of qubits 
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that could be simulated, providing a very promising route to improve the 
applicability of quantum computer simulation to the general quantum computing 
research community.  GEGR selected a specific FPGA device and associated 
memory model to be simulated, and then developed an FPGA-based simulation 
of the Quantum eXpress engine.  This FPGA simulation was used to determine 
efficient data mappings for quantum algorithm simulations, in order to minimize 
memory contention and gain the greatest possible acceleration in the simulator’s 
performance. 

2.0 SIMULATOR OVERVIEW 
Quantum Computing (QC) research has gained momentum due to several 
theoretical analyses that indicate that QC is significantly more efficient at solving 
certain classes of problems than classical computing [1].  While experimental 
validation will be required, the primitive nature of today’s QC hardware only 
allows practical testing of trivial examples.  Thus, a robust simulator is needed to 
study complex quantum computing issues.  Most QC simulators model ideal 
operations and cannot predict the actual time required to execute an algorithm, 
nor can they quantify the effects of errors in the calculation.  GE Global Research 
and Lockheed Martin jointly developed a QC simulator, Quantum eXpress, that 
models a variety of physical hardware implementations.  Quantum eXpress (QX) 
also allows for the simulation of errors in a quantum computer.  Errors typically 
arise from two sources: 1) hardware device imperfections, and 2) decoherence 
(the natural tendency of a quantum system to interact with its environment and 
move from an ordered state to a random state).  Both of these sources of error 
can be simulated. 
 
Most quantum computer simulators are designed to simulate a single algorithm, 
most commonly Shor’s factoring algorithm, on a single type of hardware.  QX can 
be used to implement any quantum algorithm running on any type of hardware, 
and can report projected algorithm execution times on the quantum device. 
 
QX has a flexible architecture that can be configured entirely through XML files.  
This enables researchers to explore new algorithms and gate architectures in-
silico before they can be physically realized, without having to write any code.  
QX has been developed entirely in Java 1.4.2 using object-oriented design 
paradigms.  It is platform independent, and has been successfully executed in 
Windows, UNIX, and Linux environments [2]. 

2.1 State Representation and the Master Equation 
Most quantum computer simulators deal only with pure states and thus cannot 
accommodate direct error simulation.  QX uses the density matrix quantum state 
representation and time evolution according to a master equation, allowing us to 
naturally simulate the effects of decoherence.  The simulator’s ability to 
accommodate decoherence does come at a price, however.  In the density 
matrix representation, a state of N qubits is represented by a 2Nx2N square matrix 

2 



instead of a 2N-element vector.  Because QX uses the density matrix 
representation, it cannot handle as many qubits as a pure-state simulator could. 
 
In the absence of decoherence, a state vector (i.e., a general superposition) 
evolves in time during a single operation according to a Schrödinger equation [3]: 
 

ψψ H
dt
di =h , (1)

 
where the matrix H is known as a Hamiltonian, which is some linear Hermitian 
operator, and ħ is a physical constant known as Planck’s constant.  An operator 
(represented as a matrix) is called Hermitian if it is equal to its own transposed 
complex-conjugate.  The vector ψ , known as a ‘ket’, is the complex vector 
associated with state ψ.  In the presence of decoherence, and with some 
approximations, the evolution is described more generally by a “master equation” 
such as [4]: 
 

]],[,[],[ ρρρ VVHi
dt
d

−−=h , (2)

 
where square brackets denote commutators (the commutator of two matrix 
operators A and B is denoted [A,B]) defined as: 
 

BAABBA −=],[  (3)
 
and ρ is a density matrix, a natural way of representing a statistical distribution of 
states.  For a pure state (a completely known superposition), the density matrix 
has the form [4]: 
 

ψψρ = , (4)
 
where ψ   is the complex conjugate (also referred to as the ‘bra’) of ψ .  ψψ  
denotes the outer product of the ket and bra.  A state remains pure (no 
decoherence) if V=0 in (2), in which case the master equation is equivalent to the 
Schrödinger equation from (1).  Otherwise, the master equation describes, in a 
statistical sense, the decohering influence of the environment. 

2.2 Evaluating Algorithms in Quantum eXpress 

2.2.1 Input 
Quantum eXpress requires two primary inputs: (1) a state file and (2) an 
algorithm file.  In the state file a ‘base’ must be specified, indicating whether the 
states of the system represent qubits (base 2), qutrits (base 3), or more.  While 
this document will always refer to qubits (2N), it should be understood that QX 
can also handle qutrits (3N) and other higher-order base states, at the user’s 
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discretion.  The initial state of the system is represented by a vector of 2N 
elements (again, presuming base 2), where N is the number of distinct qubits. 
 
The base and initial states of Quantum eXpress are specified in an eXtensible 
Mark-up Language (XML) file using the World Wide Web Consortium’s (W3C 
2001) Mathematical Mark-up Language (MathML) specification.  This file 
contains sets of vectors defining both the initial states and ‘states of interest’.  
These states are effectively identical in construction, except the initial states also 
have probability values associated with them indicating the probability that the 
initial system is in that state.  States of interest are defined for the purpose of 
allowing QX to observe certain states.  At any time during the execution of an 
algorithm, the system can be evaluated to determine the probability of it being in 
each of these observed states.  At the end of the execution of an algorithm, the 
probabilities of each of the states of interest are displayed to give an indication of 
the final superposition of the system.  An excerpt from a state configuration file 
for a base 2, 3 qubit system can be seen in Figure 1.  From this figure, we can 
see that the vectors for both the initial and interest states are complex with 23 = 8 
elements per vector. 
 
<quantum-states> 
  <class>com.quantum.system.qx.QuantumSystemQX</class> 
  <base> 2 </base> 
  <qu-number> 3 </qu-number> 
 
  <initial-states> 
    <state>  <!-- |000> + |100> --> 
      <id> 000 + 100 </id> 
      <vector> 
       <cn type="complex-cartesian"> 0.70710678118654752 <sep/> 0 </cn> 
       <cn type="complex-cartesian"> 0 <sep/> 0 </cn> 
       <cn type="complex-cartesian"> 0 <sep/> 0 </cn> 
       <cn type="complex-cartesian"> 0 <sep/> 0 </cn> 
       <cn type="complex-cartesian"> 0.70710678118654752 <sep/> 0 </cn> 
       <cn type="complex-cartesian"> 0 <sep/> 0 </cn> 
       <cn type="complex-cartesian"> 0 <sep/> 0 </cn> 
       <cn type="complex-cartesian"> 0 <sep/> 0 </cn> 
      </vector> 
      <probability> 1 </probability> 
    </state> 
  </initial-states> 
 
  <interest-states> 
    <state>  <!-- |000> --> 
      <id> 000 </id> 
      <vector> 
       <cn type="complex-cartesian"> 1 <sep/> 0 </cn> 
       <cn type="complex-cartesian"> 0 <sep/> 0 </cn> 
       <cn type="complex-cartesian"> 0 <sep/> 0 </cn> 
       <cn type="complex-cartesian"> 0 <sep/> 0 </cn> 
       <cn type="complex-cartesian"> 0 <sep/> 0 </cn> 
       <cn type="complex-cartesian"> 0 <sep/> 0 </cn> 
       <cn type="complex-cartesian"> 0 <sep/> 0 </cn> 
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       <cn type="complex-cartesian"> 0 <sep/> 0 </cn> 
      </vector> 
    </state> 
    <state>  <!-- |001> --> 
      <id> 001 </id> 
      <vector> 
       <cn type="complex-cartesian"> 0 <sep/> 0 </cn> 
       <cn type="complex-cartesian"> 1 <sep/> 0 </cn> 
       <cn type="complex-cartesian"> 0 <sep/> 0 </cn> 
       <cn type="complex-cartesian"> 0 <sep/> 0 </cn> 
       <cn type="complex-cartesian"> 0 <sep/> 0 </cn> 
       <cn type="complex-cartesian"> 0 <sep/> 0 </cn> 
       <cn type="complex-cartesian"> 0 <sep/> 0 </cn> 
       <cn type="complex-cartesian"> 0 <sep/> 0 </cn> 
      </vector> 
    </state> 
    <!-- ... --> 
  </interest-states> 
 
</quantum-states> 

Figure 1: Sample State XML Configuration File 

 
The other required input is a second XML file that describes the quantum 
algorithm to be executed.  The algorithm includes what gate operations to run 
and on which qubits those operations are performed.  This file is maintained 
separately from the initial state file, so that a single algorithm can be easily 
executed with various initial states.  An example algorithm configuration file for a 
3 qubit system can be seen in Figure 2.  From this figure, we can see that each 
gate operates on a specific set of qubits. 
 
<quantum-circuit> 
  <name>Algorithm Name</name> 
  <qu-number>3</qu-number> 
  <n>100</n> 
 
  <algorithm> 
    <unitary> 
      <operator>CNot</operator> 
      <a>1</a> 
      <qu>1</qu> 
      <qu>2</qu> 
    </unitary> 
    <unitary> 
      <operator>CNot</operator> 
      <a>2</a> 
      <qu>2</qu> 
      <qu>3</qu> 
    </unitary> 
    <unitary> 
      <operator>CNot</operator> 
      <a>4</a> 
      <qu>1</qu> 
      <qu>2</qu> 
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    </unitary> 
  </algorithm> 
</quantum-circuit> 

Figure 2: Sample Algorithm XML Configuration File for 3 Qubit Test Case 

 
Figure 2 repeatedly references a specific unitary operator—the CNot gate.  The 
definition of the CNot, and any other gate elements that may be referenced in an 
algorithm, are kept in separate gate configuration files.  As an example, the CNot 
gate XML configuration file can be seen in Figure 3.  These files are maintained 
separately from the algorithm so that they can be easily reused.  These files 
include the base of the quantum system, the Hamiltonian to apply, the amount of 
time the Hamiltonian needs to be applied, and the ideal unitary operator matrix 
that the Hamiltonian, perfectly applied for the specified time, should produce. 
 
<gate> 
  <base>2</base> 
  <ideal> 
    <matrix> 
      <matrixrow> 
        <cn>1</cn> <cn>0</cn> <cn>0</cn> <cn>0</cn> 
      </matrixrow> 
      <matrixrow> 
        <cn>0</cn> <cn>1</cn> <cn>0</cn> <cn>0</cn> 
      </matrixrow> 
      <matrixrow> 
        <cn>0</cn> <cn>0</cn> <cn>0</cn> <cn>1</cn> 
      </matrixrow> 
      <matrixrow> 
        <cn>0</cn> <cn>0</cn> <cn>1</cn> <cn>0</cn> 
      </matrixrow> 
    </matrix> 
  </ideal> 
  <hamiltonian> 
    <matrix> 
      <matrixrow> 
        <cn>0</cn> <cn>0</cn> <cn>0</cn> <cn>0</cn> 
      </matrixrow> 
      <matrixrow> 
        <cn>0</cn> <cn>0</cn> <cn>0</cn> <cn>0</cn> 
      </matrixrow> 
      <matrixrow> 
        <cn>0</cn> <cn>0</cn> <ci> a </ci> <ci> -a </ci> 
      </matrixrow> 
      <matrixrow> 
        <cn>0</cn> <cn>0</cn> <ci> -a </ci> <ci> a </ci> 
      </matrixrow> 
    </matrix> 
  </hamiltonian> 
  <time>pi  / (  2  *  a  ) </time> 
</gate> 

Figure 3: Sample Gate XML Configuration File 
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2.2.2 Algorithm Simulation 
Quantum simulators need a succinct method for describing quantum systems 
and their operations.  Since a state is represented as a vector (ket), a statistical 
ensemble of states is naturally represented as a matrix, referred to as a 
(probability) density matrix.  The density matrix describes the current state of the 
quantum system.  The execution of a quantum algorithm can be viewed as the 
multiplication of a system’s density matrix with other matrices that represent 
quantum operations. 
 
The initial states and their probabilities determine the initial density matrix of the 
system using the equation: 
 

∑
=

〉〈=
states
init

k
kkkp

#

1
||)(ρ , (5)

 
where p(k) is the probability of state k.  Equation (5) allows us to define the initial 
density matrix ρ of the system. 
 
A third input into the system is a set of ‘gate’ XML files that define the structure of 
these operations.  Each gate is a unitary operator, which is defined by a 
Hamiltonian matrix and a time ∆t over which it is applied.  This is described by 
the following equation: 
 

h/)( tiHetU ∆−=∆ , (6)
 
where U is the unitary operator and H is the Hamiltonian for the gate. 
 
Simulation Without Decoherence 
If we do not simulate decoherence in the master equation in (2), the operators 
U(∆t) are applied to the density matrix ρ according to the following equation: 
 

†)()()()( tUttUtt ∆∆=∆+ ρρ . (7)
 
To minimize the numerical error in the simulation, instead of calculating the 
density matrix ρ once after the full time step ∆t, QX divides the time step by some 
value n, and repeatedly calculates the next value of ρ.  Figure 4 shows this 
function.  In Quantum eXpress, n is set to 100. 
 

for i = 1 to n  
†)()()()(

n
tUt

n
tU

n
tt ∆∆
=

∆
+ ρρ  

Figure 4: Simulation Without Decoherence Function 
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Here U(∆t)† is the Hermitian conjugate of U(∆t).  The gate XML file contains the 
matrix H and ∆t in MathML format.  Each gate may act on a different number of 
possible qubits, as some apply to single qubits (e.g., Not), some apply to two 
(e.g., CNot {Conditional Not} and Swap), and so on.  The exact Hamiltonian to 
apply and for how long depends on (a) the type of gate operation and (b) the type 
of hardware.  E.g., a ‘Not’ gate may have different Hamiltonians depending on 
the type of hardware modeled. 
 
The exponentiation of the matrix H in (6) is evaluated using the Taylor Series 
expansion of ex: 
 

...
!

...
!3!2

1
!

32

0
++++++== ∑

∞

= k
xxxx

k
xe

k

k

k
x  (8)

 
Combining (6) and (8), the unitary operator U may be written as: 
 

32/ )(
!3

)(
!2

1)(
hhh

h tHitHtiHIetU tiH ∆
+

∆
−

∆
−≈=∆ ∆− . (9)

 
Note that the approximation of e-iH∆t/ħ uses the third-order of the Taylor Series 
expansion.  This could be increased to improve the numerical accuracy of the 
simulator (though it would negatively impact its efficiency).  Using the cubic 
expansion produces numerical errors on the order of 10-5, which for most 
evaluations is quite sufficient.  Equations (5) through (9) illustrate, using the no-
decoherence case, how the simulator evaluates quantum algorithms. 
 
Simulating Decoherence 
If decoherence is simulated, the master equation in (2) can be represented as: 
 

[ ] [ ] [ ]HH VVVVHi
dt
d ρρρρ ,,, ++−= , (10)

 
where V is a matrix that represents decoherence being applied to the quantum 
system.  If we assume the V decoherence matrices can be applied to each qubit 
N in the density matrix independently, then (10) can be represented as: 
 

[ ] [ ] [ ]( )∑
=

++−=
N

j

H
jj

H
jj VVVVHi

dt
d

1

,,, ρρρρ . (11)

 
A second-order discrete-time approximation of (11) can be written as [5]: 
 

( ) ( )ttttt ρρ
⎭
⎬
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⎨
⎧

Ω
∆
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2
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where 
 

[ ] [ ] [ ]( )∑
=
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N

j

H
jj

H
jj VVVVHi

1

,,, ρρρρ  (13)

 
and 
 

[ ] [ ] [ ]( )∑
=

Ω+Ω+Ω−=Ω
N

j

H
jj

H
jj VVVVHi

1

2 ,,, ρρρρ . (14)

 
Using the commutator defined in (3) to expand ρΩ  and  we obtain: ρ2Ω
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=
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N

j
j

H
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H
j

H
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and 
 

( )∑
=

Ω−Ω−Ω+Ω−Ω−=Ω
N

j
j

H
jj

H
j

H
jj VVVVVVHHi

1

2 2)( ρρρρρρ . (16)

 
From the substitution of (15) and (16) into (12) we can determine the complete 
simulation of a quantum algorithm with decoherence requires 12N+4 matrix 
multiplication at each time step ∆t, where N is the number of qubits in the 
system.  To minimize the numerical error in (12), instead of calculating the 
density matrix ρ once after the full time step ∆t, QX divides the time step by some 
value n, and repeatedly calculates the next value of ρ.  Figure 5 shows this 
function.  In Quantum eXpress, n is set to 100.  Due to these n iterations, we find 
that the evaluation of a quantum algorithm with decoherence requires 
(12N+4)*100 matrix multiplications at each time step. 
 

for i = 1 to n  
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n
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tt ρρ
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Figure 5: Simulation With Decoherence Function 

 
Decoherence Examples 
Two forms of decoherence can be simulated in Quantum eXpress, phase 
damping and amplitude damping [6, 7]. 
 

Phase Damping 
When we talk about “measuring” a qubit in the computational basis, we’re talking 
about a process in which the qubit modifies its macroscopic environment one 
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way if it is in the state 0  and modifies it a different way if it is in the state 1 .  If 
the qubit is in a superposition of these, then unitarity implies that the same 
interaction causes it to become entangled with the macroscopic environment.  
The result is either a 0  or a 1 , and the original superposition is lost.  This is an 
example of “phase damping.” 
 
More generally, phase damping is any interaction between the qubit and its 
environment in which: 

• If the qubit is 0 , it affects the environment one way and remains 0  

• If the qubit is 1 , it affects the environment a different way and remains 

1 . 
 
An example of such an interaction is: 
 

⎥
⎦

⎤
⎢
⎣

⎡
=

b
V

0
00

 (17)

 
for some constant b .  This says that a qubit in state 0  does nothing to its 

environment, but a qubit in state 1  does something.  The matrix V is optionally 
included in the algorithm configuration file.  An example phase damping matrix is 
shown in Figure 6, exactly as it would be included in the configuration file.  The 
absence of such a matrix, or the inclusion of an all-zero decoherence matrix 
indicates to the simulator that the algorithm should be executed sans 
decoherence. 
 
  <decoherence> 
    <matrix> 
      <matrixrow> 
 <cn> 0 </cn> <cn> 0 </cn> 
      </matrixrow> 
      <matrixrow> 
 <cn> 0 </cn> <cn> 0.005 </cn> 
      </matrixrow> 
    </matrix> 
  </decoherence> 

Figure 6: Sample Decoherence Matrix in XML 

 
Amplitude Damping 

Suppose that a qubit in state 1  can “decay” into state 0  by emitting a photon.  
This does two things: first, unlike phase damping, it changes the state of the 
qubit (unless it was 0  already).  Second, like phase damping, it causes 0  and 

1  to affect the environment in different ways.  Only one of these two states can 
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emit a photon into the environment.  Because of the second effect, this is another 
example of decoherence.  It is called “amplitude damping” because no matter 
what state we start with, we eventually end up with 0 . 
 
An example of an amplitude-damping interaction is: 
 

⎥
⎦

⎤
⎢
⎣

⎡
=

00
0 b

V  (18)

 
for some constant b .  This says that nothing happens to a qubit in state 0 , but 

a qubit in state 1  can change into 0 . 
 
Simulating Device Imperfections/Noise 
Noise due to device imperfections and other factors is at the gate level, and 
therefore, there is a different noise element potentially associated with each gate.  
Noise is simulated in QX by modifying the time with which a gate’s Hamiltonian is 
applied to the quantum system.  This means that the matrices used to simulate 
an algorithm do not change, and therefore, no new equations are required to 
simulate noise.  QX will use the standard decoherence or decoherence-free 
equations for simulating the algorithm, and only add Gaussian noise to the gate 
application times.  An example Gaussian noise element (defined by a mean and 
standard deviation) is shown in Figure 7, exactly as it would be included in the 
gate configuration file. 
 
  <noise> 
    <mean>0</mean> 
    <stddev>0.0005</stddev> 
  </noise> 

Figure 7: Sample Noise in XML 

 

2.2.3 Output 
At the completion of the evaluation of an algorithm, we wish to understand the 
final superposition of the quantum system.  The states of interest from Figure 1 
are measured against the final density matrix to determine the probability that the 
system is in each state, using the following equation: 
 

)|(|)( ρkktracekp 〉〈= , (19)
 
where p(k) is the probability that the final superposition is in state k described by 
ket . 〉k|
 
 

11 



3.0 SUMMARY OF KEY ACCOMPLISHMENTS 
What follows is a bulleted list of the key accomplishments of this project: 
 

• Optimized existing quantum computer simulator’s matrix multiplication 
operations by taking advantage of particular structure of matrices. 

• Reduced order of simulator operations per time step from O(23N) to 
O(22N+g), where N is the number of qubits in the algorithm and g is the 
number of qubits on which the gate operates. 

• Reduced simulator memory overhead requirement from 2Nx2N to 2gx2g. 
• Achieved a 99.5% performance improvement for a single-processor 

simulation of 7-qubit Shor’s Algorithm with decoherence (from just under 
two days to just over twelve minutes). 

• Further enhanced simulator by distributing simulator matrix calculations 
across a cluster of at most 22(N-g) nodes. 

• Achieved an 87.5% performance improvement over the previously 
optimized simulation of the 7-qubit Shor’s Algorithm with decoherence, 
using a cluster of 16 nodes (reduced simulation time from just over twelve 
minutes to a minute and a half). 

• Achieved an overall performance improvement of 99.94% from the initial 
simulator implementation to the optimized and distributed simulation of the 
7-qubit Shor’s Algorithm with decoherence. 

• Enhanced simulator to evaluate a step-by-step comparison of the ideal 
quantum algorithm execution to the actual (decoherence and/or error-
included) simulation, storing the density matrix difference after each gate 
application. 

• Evaluated Frobenius norm to quantify difference between two matrices 
after each step. 

• Augmented simulator graphical user interface to visualize heatmaps of 
ideal vs. actual density matrices at each step in algorithm. 

• Modeled three experimental ion trap quantum computer algorithms: 
Deutsch-Jozsa, Grover, and semi-classical quantum Fourier Transform. 

• Compared the simulator’s results in the absence of noise to the ideal ion 
trap algorithm results, resulting in errors less than 0.002%. 

• Compared the simulator’s results with gate noise to the experimental ion 
trap results. 

• Achieved overlapping fidelities between the simulator’s results and the 
experimental results with 10% noise in the gate application times. 

• Implemented an FPGA-based accelerator for quantum gate application. 
• Achieved a 12.4x performance improvement over the single processor 

implementation for a 3-qubit test case. 
• Achieved a 26.9x performance improvement over the single processor 

implementation for a 5-qubit test case. 
• Compared precision loss stemming from using a single precision floating 

point data type for computations rather than the double precision data type 
used on the general purpose processors. 
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4.0 DETAILS OF KEY ACCOMPLISHMENTS 

4.1 Performance Enhancement via Matrix Multiplication Optimizations 
The objective of these enhancements was to optimize the matrix multiplications 
in the simulator to improve its performance.  A quantum computer simulator that 
demonstrates interactive performance for small systems and feasible compute 
times for larger quantum systems would provide a powerful test-bed for 
exercising and quantifying the performance of quantum algorithms. 

4.1.1 Test Cases 
Three different algorithms (utilizing 3, 5, and 7 qubits, respectively) were used to 
evaluate the original performance of the simulator.  The 3-qubit algorithm, shown 
in Figure 8, is comprised of three Conditional Not (CNot) gates. 
 

 
Figure 8: 3 Qubit Test Case 

 
The 5-qubit algorithm, shown in Figure 9, is comprised of six gates; three of 
which are 2-qubit CNot gates, and the remaining three of which are 3-qubit 
Conditional-Conditional Not gates (CCNot). 
 

 
Figure 9: 5 Qubit Test Case 

 
The 7-qubit algorithm used for evaluating Quantum eXpress is Shor’s Algorithm 
for the prime factorization of numbers [1].  Operating on 7 qubits, Shor’s 
Algorithm factors the number 15 into the prime numbers 3 and 5.  This algorithm 
is shown in Figure 10. 
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Figure 10: 7 Qubit Test Case (Shor’s Algorithm) 

 
As can be seen in Figure 10, a smaller algorithm is incorporated into the primary 
algorithm (“shor-fourier-inverse-3”).  This is a 3-qubit inverse Fourier Transform, 
which is shown in Figure 11.  In total, the 7-qubit algorithm is comprised of 21 
gates of various type. 
 

 
Figure 11: 3 Qubit Inverse Fourier Transform for 7 Qubit Test Case 
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The results of evaluating these three algorithms with the original implementation 
of QX can be seen in Table 1.  Clearly, the no decoherence implementation 
exhibits run times that are acceptable for interactive use.  The original 
decoherence simulation times are extremely inefficient, however.  Adding a few 
more qubits would quickly increase run times to weeks or months. 
 

Table 1:  Simulation Times Before Optimization 
 No Decoherence Original Decoherence 

3 Qubit 2.1s 5.2s 
5 Qubit 4.6s 720.6s (12m 0.6s) 
7 Qubit 88s (1m 28s) 155191.4s (43h 6m 31s) 

 

4.1.2 Multiplication Optimizations 
The core computation performed by the simulator is matrix multiplication.  It is 
costly for two reasons.  First, the matrices are large.  The density matrix 
representation of the quantum state requires matrices with the number of rows 
and columns exponential in the number of qubits being simulated.  Thus, to 
simulate a system with N qubits requires a density matrix with 2N rows and 2N 
columns.  For example, for N=8, a 256x256 matrix is required, resulting in 65,536 
elements.  For N=16, a 65,536x65,536 matrix is required, resulting in over 4.2 
billion elements in the matrix.  Second, general matrix multiplication is relatively 
expensive.  In order to simulate algorithms with large numbers of qubits, 
alternative matrix multiplication algorithms are required. 
 
The Strassen Algorithm replaces expensive matrix multiplication operations with 
less-expensive addition and subtraction operations [8].  Therefore, the Strassen 
Algorithm with Winograd’s Variant was implemented in QX to improve the speed 
of matrix multiplication over the traditional row-column multiplication algorithm.  
However, due to the additional memory overhead of Strassen’s Algorithm, 
significant performance improvements were not achieved.  In order to realize 
significant improvements it was necessary to exploit the unique structure of the 
matrices used in the Quantum eXpress simulations. 
 
In this section we develop an algorithm to perform the single time step update 
represented by (11).  For clarity we will focus on the core, single time step 
computation that serves as the basis for simulating the application of a gate.  
Improvements in this computation will lead to proportional improvements in the 
overall system performance.  Although we concentrate on run time, our solution 
will also provide an improvement in storage requirements. 
 
Our first block of pseudo-code, found in Figure 12, is for the case where there is 
no decoherence.  This is represented by (11), (14) and (15), where the 
decoherence terms are all zero.  A straightforward implementation based on the 
inner product method for matrix multiplication is given in the first code fragment. 
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ApplyGate1Step(Rho, H, dT) 
Inputs: 
Rho a square matrix of side QB representing the state of the quantum 

system being simulated.  The result is returned as an update to 
Rho 

H the same size as Rho, is the Hamiltonian operator for the gate 
being applied 

dT the time step size  
LocalVariables: 
f1 = dT and f2 = (dT^2)/2 
QB  the number of rows (columns) in the matrix Rho 
Ts1, Ts2 an array the same size as Rho, which holds the first (second) 

order term of the Taylor series.  They are allocated once and 
reused on subsequent calls 

// Compute the first order term (H*Rho - Rho*H) 
 for (j = 0; j++; j < QB) 
  for (k = 0; k++; k < QB) 
   Ts1[j,k] = 0 
   for (l = 0; l++; l < QB) 
    Ts1[j,k] += H[j,l]*Rho[l,k] 
    Ts1[j,k] -= Rho[j,l]*H[l,k] 
// Compute the second order term (H*T1 - T1*H) 
 for (j = 0; j++; j < QB) 
  for (k = 0; k++; k < QB) 
   Ts2[j,k] = 0 
   for (l = 0; l++; l < QB) 
    Ts2[j,k] += H[j,l]*Ts1[l,k] 
    Ts2[j,k] -= T1[j,l]*H[l,k] 
// Update Rho according to Rho + f1*T1 + f2*T2 
 for (j = 0; j++; j < QB) 
  for (k = 0; k++; k < QB) 
   Rho[j,k] += f1*Ts1[j,k] + f2*Ts2[j,k] 

Figure 12: Non-Optimized, No Decoherence Matrix Simulation 

 
This code requires O(23N) arithmetic operations per time step and two full 
temporary matrices the size of the density matrix ρ (Rho).  Without more 
information the above code would be acceptable. 
 
We do know, however, that although ρ is, in general, full, H will be sparse.  In 
fact, H will have a very special structure.  To better understand the structure we 
need to consider the relationship between an index (row or column) and the 
basis states of the individual qubits.  The basis vectors (indices) for a system are 
formed by interpreting the catenation of the basis vectors for the individual qubits 
as a binary number where bit position i corresponds to the value of the basis 
vector for qubit i.  For example, 1002 refers to the state where qubit0 = 0, qubit1 = 
0, and qubit2 = 1. 
 
To see this, consider the construction of H, the Hamiltonian for the system, in 
terms of G, the Hamiltonian of the gate.  This relationship is best understood by 
looking at a specific case.  Consider a two-qubit gate.  The most general case of 
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a Hamiltonian, G, defining a gate’s effect on two qubits, is a full 4x4 matrix shown 
in (20). 
 

G =

a b c d
e f g h
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⎟
⎟
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Now consider the structure of the system Hamiltonian H(G) resulting from the 
application of the gate G.  Since the system has more qubits than the gate 
operates on we must choose which qubits to transform and which one to leave 
untouched.  For the purpose of this example we will apply the gate to qubit0 and 
qubit1 leaving qubit2 untransformed.  This produces the system Hamiltonian: 
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The upper left block of H(G) corresponds to the transformation on states 
corresponding to qubit2 being in the 0 basis state while the lower right block 
corresponds to qubit2 in the 1 basis state.  Note that if there were additional 
higher-order system qubits, the matrix H(G) would still be block diagonal but it 
would have a number of blocks exponential in the number of qubits not being 
transformed.  Whenever a gate is operating on the low order qubits of a system 
state we will say that the circuit and the corresponding system Hamiltonian is in 
standard form.  Our next code fragment simulates the application of a gate in 
standard form for a single time step: 
 
ApplyGate1Step(Rho, H, dT) 
... 
LocalVariables: 
... 
GB the number of rows (columns) in the basic gate Hamiltonian G 
// The outer 2 loops iterate over the blocks of the block 
// diagonal matrix H(G).  Note since all blocks are the  
// same we only need the smaller matrix G. 
for (jblk = 0; jblk++GB; kblk < QB} 
 for (kblk = 0; kblk++GB; bklk < QB} 
// The next three loops are the standard matrix multiply  
// on blocks of Rho by G to compute T1 <- (G*Rho - Rho*G) 
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  for (j = 0; j++; j < GB) 
   for (k = 0; k++; k < GB) 
    T1 = 0 
    for (l =  0; l++; l < GS) 
     T1 += G[j,l]*Rho[l+jblk,k+kblk] 
     T1 -= Rho[j+jblk,l+kblk]*G[l,k] 
     Ts1[j+jblk,k+kblk] = f1*T1 
// We use the same computation for the second order term 
// noting that the block updates are independent 
  for (j = 0; j++; j < GB) 
   for (k = 0; k++; k < GB) 
    T2 = 0 
    for (l =  0; l++; l < GS) 
     T2 += G[j,l]*Ts1[l+jblk,k+kblk] 
     T2 -= T1[j+jblk,l+kblk]*G[l,k] 
     Ts2[j+jblk,k+kblk] = f2*T2 
// Finally, we combine the terms of the series, again  
// the result blocks are independent. 
  for (j = 0; j++; j < GB) 
   for (k = 0; k++; k < GB) 
    Rho[j+jblk, k+kblk] += Ts1[j+jblk, k+kblk] 
    Rho[j+jblk, k+kblk] -= Ts2[j+jblk, k+kblk] 

Figure 13: Standard No Decoherence Matrix Simulation 

 
The single large 2Nx2N matrix multiplication is replaced by N-g small 2gx2g matrix 
multiplications.  To see the impact this change has on performance, notice that 
the outer two loops cause the update section to be executed 22(N-g) times while 
the update section performs O(23g) operations.  This leads to a computation 
requiring O(22N+g).  Since g tends to be small (1, 2, or 3 usually) while N, which 
depends on the system, is the total number of qubits, we have 2N+g<<3N.  Thus, 
the new code offers a significant improvement over the previous version.  Also, 
with the optimized multiplication, the large 2Nx2N unitary operator never needs to 
be constructed, one 2gx2g block is sufficient.  This process is illustrated in Figure 
14.  The gate Hamiltonian multiplies each of the individual blocks of the density 
matrix. 
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Figure 14: Canonical Density Matrix Multiplication, N = 4, g = 2 

 
Unfortunately not all gates appear in standard position.  (22) shows the same 
system gate as (21) but applied to different qubits, resulting in nonstandard form.  
The example on the left is being applied to qubits 0 and 2 while the one on the 
right is being applied to qubits 1 and 2. 
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By inverting the transformations that produced these Hamiltonians from the 
standard gate definition, we can reduce the general problem to the specific 
problem of simulating a gate in standard position, producing the simplified block 
diagonal matrix multiplication implemented in Figure 13.  The desired 
transformation mapping the gate into standard position can be thought of as a 
simple renaming of the system qubits.  This renaming leads to a permutation of 
the rows and columns of the density matrix. 
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Code to generate the permutation of the row and column indices required to 
bring the algorithm and density matrix into standard form is presented in Figure 
15.  Recall that each index represents a computational basis state, one in which 
each of the qubits has a specific value, either 0 or 1.  The index corresponding to 
a computational basis state is the binary number resulting from concatenating the 
values of the system's qubits in a fixed order, which we will call the input order.  
Standard form requires that the bits being acted upon by a gate be in the lowest 
order positions.  Thus, for each index, we can compute its standard equivalent by 
permuting the system bits to bring the gate bits into the low order positions.  The 
following pseudo-code achieves the required transformation of the indices.  It 
produces a permutation which, for each standard position, i, identifies the 
corresponding index in input order.  All that remains is to permute the rows and 
columns of the density matrix, then using this result, compute the Taylor series 
for n time steps, and then permute the rows and columns of the density matrix 
back to input order using the inverse of the permutation. 
 
IndexPermutation(N, g, GateIn) 
N The number of qubits in the system 
g The number of qubits input to the gate 
GateIn A list of the g qubits the gate will be applied to 
Standard The permutation which, when applied to the rows and columns 

of the density matrix, will bring it into standard form. 
Note that P is a permutation of the integers 0..2^N - 1 

// This is simply achieved.  For each index in P from  
// 0 .. 2^N we permute its bits to move the bits in 
// positions identified in GateIn to the low order 
// positions.  The remaining bits are slid to the high 
// order end to squeeze out the holes left by them.  The 
// result is an index permuted to correspond to moving the 
// gate into standard form. 
 spaces = sort(GateIn, 'decreasing') 
 for (i = 0; i++; i < N) 
  newi = i 
  for (k = 0; k++; k < N) 
   bit = getbits(i, k) 
   setbits(newi, k, getbits(i, k)) 
  for (k = 1; k++; k < N && spaces[k] >= N) 
   frag = getbits(i, (spaces[k]..spaces[k-1])  
   setbits(newi, (spaces[k]+k..spaces[k-1]+k), frag)  
   frag = getbits(i, (spaces[k]..spaces[k-1])  
   setbits(newi, (spaces[k]+k..spaces[k-1]+k), frag)  
 Standard[i] = newi 

Figure 15: Density Matrix Permutation Algorithm 

 
To visualize the result of the permutation, Figure 16 shows the beginning portion 
of a 7 qubit Shor’s algorithm.  Figure 17 shows the same algorithm if the density 
matrix is permuted before each gate operation, resulting in the appearance that 
the gates are all in standard form. 
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Figure 16: First Portion of 7 Qubit Shor’s Algorithm 

 

2

3

4

5

6

7

1

1

3

4

5

6

7

2

1

2

4

5

6

7

3

1

3

5

7

2

6

4

1

2

3

5

7

4

6

1

2

4

5

7

3

6

1

2

4

6

7

3

5

2

3

4

5

6

7

1

1

3

4

5

6

7

2

1

2

4

5

6

7

3

1

3

5

7

2

6

4

1

2

3

5

7

4

6

1

2

4

5

7

3

6

1

2

4

6

7

3

5

 
Figure 17: First Portion of 7 Qubit Shor’s Algorithm with Permutation 

 
Finally we must include the effects of decoherence.  We address phase damping 
decoherence in this effort.  To account for phase damping we must evaluate: 
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as part of computing the terms Ωρ   and   of the Taylor series.  First we will 
look at the form of V

Ω2ρ
j.  Recall that for a single qubit the phase damping 

decoherence operator is expressed as: 
 

V =
0 0
0 b
⎡

⎣
⎢

⎤

⎦
⎥ = b

0 0
0 1
⎡

⎣
⎢

⎤

⎦
⎥ = bV̂ . (24)

 
Again, using the example of a 3-qubit system, if we expand the single qubit 
definition we get the following: 
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As a consequence of the structure of the matrices it can be shown that: 
 

ViVi
† = bb†V̂iV̂i

† = BV̂i . (26)
 
Equation (26) allows us to simplify (23) yielding: 
 

∑
=

−−
N

j
jjjj VXXVVXVB

1

)ˆˆˆˆ2( . (27)

 
Since the  are diagonal binary matrices they possess properties that allow 
further algebraic simplification of (27) before it is included in the simulator code.  
The product 

V̂i

V̂X  has rows of 0 where the corresponding diagonal element of V is 
0, otherwise it has the corresponding row of X  in rows where the diagonal 
element of V̂  is 1, thus acting like a row selector.  Similarly, multiplication from 
the right selects columns. 
 
At this point it would be useful to review an alternative form of the matrix product, 

, called the Hadamard product. ⊗
 

(A⊗ B)i, j = ai, j × bi, j  (28)
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Notice that ⊗  is commutative and the matrix , a matrix of all 1’s, serves as an 
identity.  Thus we can further rewrite (27): 
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(29)

 
Notice that W  only depends on the number of qubits.  The following code 
fragment includes phase decoherence effects based on (29). 

ˆ

 
W a matrix which is a precomputed function of user input 
... 
// The next three loops are the standard matrix multiply  
// on blocks of Rho by G to compute T1 <- (G*Rho - Rho*G) 
 for (j = 0; j++; j < GB) 
  for (k = 0; k++; k < GB) 
   T1 = 0 
   for (l =  0; l++; l < GS) 

   T1 += G[j,l]*Rho[l+jblk,k+kblk] 
    T1 -= Rho[j+jblk,l+kblk]*G[l,k] 
    T1 += Rho[j+jblk,l+kblk]*W[j+jblk,l+kblk] 
    Ts1[j+jblk,k+kblk] = f1*T1 
// We use the same computation for the second order term 
// noting that the block updates are independent 
 for (j = 0; j++; j < GB) 
  for (k = 0; k++; k < GB) 
   T2 = 0 
   for (l =  0; l++; l < GS) 
    T2 += G[j,l]*Ts1[l+jblk,k+kblk] 
    T2 -= T1[j+jblk,l+kblk]*G[l,k] 
    T2 += Ts1[j+jblk,l+kblk]*W[j+jblk,l+kblk] 
    Ts2[j+jblk,k+kblk] = f2*T 

Figure 18: Phase Decoherence Matrix Simulation Algorithm 

 
Finally, we need to compute . Ŵ
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Going back to the definition of V  we see that j (Vj )i ,i = Bits(i) j , the  bit of the 

binary representation of .  Thus the i  component of the first sum is the number 
of ones in the binary representation of 

j th

i th

j . 

4.1.3 Optimization Results 
These enhancements have resulted in substantial performance improvements in 
the execution of Quantum eXpress.  Table 2 shows the pre-optimization 
simulation times accompanied by the post-optimization simulation times. 
 

Table 2: Post-Optimization Simulation Times 
 No Decoherence Original Decoherence Optimized Decoherence 
3 Qubit 2.1s 5.2s 1.01s 
5 Qubit 4.6s 720.6s (12m 0.6s) 20.77s 
7 Qubit 88s (1m 28s) 155191.4s (43h 6m 31s) 758s (12m 38s) 

 
We were able to take advantage of the unique structure of the system 
Hamiltonian matrices to reorganize their bits to make the matrix appear block 
diagonal.  By permuting the same bits of the density matrix, we produced the 
equivalent matrix multiplication.  We were then able to replace the single large 
matrix multiplication with many smaller multiplications, substantially reducing the 
number of calculations and memory overhead required. 
 
Table 3 provides the percent improvement from the original decoherence to the 
optimized decoherence, and Figure 19 plots those results. 
 

Table 3: Decoherence Improvement from Original Implementation 
 Improvement (%) 

3 Qubit 80.58% 
5 Qubit 97.12% 
7 Qubit 99.51% 
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Figure 19: Simulation Performance Improvement 

 

4.2 Port to High Performance Computing Cluster 
The new algorithm for gate application significantly improved the performance of 
Quantum eXpress.  Beyond those optimizations, porting QX to a high 
performance-computing environment could also significantly reduce the amount 
of time required to execute a simulation.  It could also increase the number of 
qubits able to be simulated, enabling a more thorough investigation of error 
correction schemes.  This would allow researchers to better quantify the amount 
of error correction required to develop a large-scale quantum computer with high 
fidelity.  A byproduct of the optimized implementation described above is an 
improved locality of reference resulting from smaller matrix multiplications that 
naturally lends itself to a distributed implementation.  Each of the small 2gx2g 
matrix multiplications in the optimized simulation is independent.  Thus, all of 
them can occur in parallel.  Therefore, in theory, doubling the number of CPU’s in 
the execution could reduce the computational time by half (neglecting the 
processing overhead on the head node and the cost of distributing the data 
across the network). 
 
Quantum eXpress is divided into two components—a graphical user interface 
(GUI) for designing quantum algorithms and specifying initial states, and a back-
end simulator engine responsible for evaluating the algorithms.  The GUI can 
invoke a local instance of the simulator engine or it can connect to a remote 
server via the Simple Object Access Protocol (SOAP) to execute the simulator 
engine running on a shared server, as shown in Figure 20. 
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Local Server

Simulator
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or Simulator
Engine

Remote Server  
Figure 20: Quantum eXpress Connected to Either a Local or Remote Server 

 
This division of labor allows us to concentrate our performance enhancement 
efforts on the back end simulator while the GUI remains unchanged on a 
researcher’s desktop.  The parallelized version is embodied in an alternative 
back end that executes on a cluster.  The head node of the cluster is responsible 
for managing the density matrix, initializing the Hamiltonian, and dividing and 
distributing the density matrix and Hamiltonian to the cluster nodes to execute 
the parallel evaluations. 
 
The distributed implementation utilizes Java’s Remote Method Invocation (RMI) 
[9] capabilities to communicate with and pass data to the various nodes.  A Web 
server is also required, to provide the nodes with access to the required QX code 
to perform the simulations.  In our implementation, the Web server runs on the 
head node.  It is started using the script shown in Figure 21. 
 
#!/bin/tcsh 
 
echo Starting webserver on port 8080 
java -jar lib/tools.jar -dir . -verbose -port 8080 

Figure 21: Script to Start Web Server on Head Node (startWebServer.sh) 

 
The individual cluster nodes each connect with the Web server via RMI to 
download the simulator code.  Each node in the cluster thus must be made 
aware of the head node’s Web server URL, and is started with the script shown 
in Figure 22. 
 
#!/bin/tcsh 
 
# set properties 
# Web URL 
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setenv WebURL http://master.afrl.mil:8080/ 
 
# RMI URL 
setenv RMIport 1099 
setenv RMIURL rmi://hostname0.afrl.mil:$RMIport/qxNode 
 
# start RMI registry 
echo Starting RMI registry on port $RMIport 
rmiregistry $RMIport & 
sleep 2 
 
# start Node 
echo Starting QX node with RMI URL $RMIURL 
java -classpath .:./lib/quantumexpress.jar::./lib/jdom.jar  
-Djava.rmi.server.codebase=$WebURL -Djava.security.policy= 
security/policy.all com.quantum.engine.QuantumClusterServer $RMIURL 

Figure 22: Script to Start a Cluster Node (startNode.sh) 

 
To know how to communicate with each of the cluster nodes, an XML 
configuration file, accessible by the head node, lists all of the available nodes.  
Figure 23 shows an example configuration file. 
 
<nodes> 
  <distributed> true </distributed> 
  <node> rmi://hostname0.afrl.mil:1099/qxNode </node> 
  <node> rmi://hostname1.afrl.mil:1099/qxNode </node> 
  <node> rmi://hostname2.afrl.mil:1099/qxNode </node> 
  <node> rmi://hostname3.afrl.mil:1099/qxNode </node> 
  ... 
</nodes> 

Figure 23: XML Configuration for Head Node to Find Cluster Nodes (nodes.xml) 

 
Figure 24 shows how the cluster nodes and Web server interact, and how the QX 
client runs on the head node to distribute work to each of the cluster nodes. 
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Figure 24: Cluster Node Communication 

 

4.2.1 Density Matrix Distribution 
Once all of the nodes are started and a simulation has begun, the head node first 
determines the Hamiltonian that must be used for each gate.  It then determines 
how many nodes in the cluster to use for the parallel simulation.  The maximum 
number of nodes that can be used is dependent on the number of qubits N in the 
density matrix, and the number of qubits g being operated upon by the gate in 
question.  The maximum number of usable nodes per gate is the number of 2gx2g 
matrices that the full 2Nx2N density matrix can be divided into: 
 

)(22 gN− . (31)
 
Clearly, the maximum number of usable nodes is a power of 2.  Assuming each 
node in the cluster is equivalent, there is no benefit to dividing the density matrix 
into uneven portions, so the head node divides the density matrix by powers of 2.  
First, the density matrix is divided into as many columns as possible, as long as 
the number of columns does not exceed the number of available nodes and the 
minimum column width is 2g.  An example of repeatedly dividing the density 
matrix into columns is shown in Figure 25. 
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1 1 21 2 1 2 3 41 2 3 4

 
Figure 25: Density Matrix Column Division Example, N = 4, g = 2 

 
If more nodes are available, the density matrix is further divided into rows.  As 
expected, the minimum row width is 2g.  An example of further dividing the 
density matrix into rows is shown in Figure 26. 
 

2 3 41 4

5 6 7 85 6 7 8

9 10 11 129 10 11 12

13 14 15 1613 14 15 16

1 2 3 41 2 3 4

5 6 7 8

1 2 3 4

5 6 7 85 6 7 8

1 2 3 41 2 3 4 1 2 3 41 2 3 4

 
Figure 26: Density Matrix Row Division Example, N = 4, g = 2 

 
Once the head node divides the density matrix, it communicates with each node 
in the cluster to distribute a portion of the density matrix and the Hamiltonian.  
Each cluster node then executes the simulation and passes the resulting density 
matrix back to the head node. 

4.2.2 Distributed Simulation 
We use the code for applying a gate in canonical position as the basis for 
partitioning the problem for distributed implementation.  Notice that the outer two 
loops iterate over a set of blocks of ρ performing matrix multiplications.  The 
multiplications have no data dependencies thus they can be treated as 
independent threads.  Although we did not explicitly treat the multiple evaluation 
of the Taylor series expansion to simulate multiple time steps, it should be clear 
that the independence of the data in the threads could be used to bring that 
iteration inside the thread. 
 
forall (jblk = 0; jblk+=GB; jblk < QB) 
 forall (kblk = 0; kblk+=GB; kblk < QB) 
        Thread(Rho, G, W, jblk, kblk, GB) 
// The next three loops are the standard matrix multiply  
// on blocks of Rho by G to compute T1 <- (G*Rho - Rho*G) 
  for (j = 0; j++; j < GB) 
   for (k = 0; k++; k < GB) 
    T1 = 0 
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    for (l =  0; l++; l < GS) 
     T1 += G[j,l]*Rho[l+jblk,k+kblk] 
     T1 -= Rho[j+jblk,l+kblk]*G[l,k] 
     T1 += Rho[j+jblk,l+kblk]*W[j+jblk,l+kblk] 
     Ts1[j+jblk,k+kblk] = f1*T1 
// We use the same computation for the second order term 
// noting that the block updates are independent 
  for (j = 0; j++; j < GB) 
   for (k = 0; k++; k < GB) 
    T2 = 0 
    for (l =  0; l++; l < GS) 
     T2 += G[j,l]*Ts1[l+jblk,k+kblk] 
     T2 -= T1[j+jblk,l+kblk]*G[l,k] 
     T2 += Ts1[j+jblk,l+kblk]*W[j+jblk,l+kblk] 
     Ts2[j+jblk,k+kblk] = f2*T 

Figure 27: Distributed Simulation Algorithm 

 
As expected, the distributed simulation also significantly improved the 
performance of the simulator.  Table 4 shows the results of distributing the three 
algorithm simulations across a cluster, with different numbers of nodes available.  
The number of nodes used at each step are shown, along with the resulting 
simulation times.  The optimal number of nodes used and simulation times are in 
bold. 
 

Table 4: Distributed Simulation Times 

 3 Qubits 5 Qubits 7 Qubits 
Nodes 

Available 
Time (sec) Nodes 

Used 
Time (sec) Nodes 

Used 
Time (sec) Nodes 

Used 
0 1.01 0 20.77 0 758 0 
1 1.13 1 21.43 1 699 1 
2 0.95 2 11.36 2 364 2 
4 0.92 4 6.46 4 199 4 
8 0.97 4 4.16 8 124 8 
16 0.98 4 3.36 16 95 16 

 
Figure 28 shows a plot of the distributed simulation times from Table 4. 
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Figure 28: Distributed Simulation Times vs. Number of Nodes 

 
Table 5 shows how increasing the number of cluster nodes at each row in Table 
4 improves the performance of the simulation as compared to the non-distributed 
(zero nodes) simulation.  If we assume the head node causes no overhead in the 
simulation, and that there is no overhead due to distributing data across the 
network to the cluster nodes, than we can calculate the best possible speed-up, 
as is shown under the ‘ideal’ column in Table 5. 
 
Table 5: Distributed Simulation Time Improvement Compared to Non-Distributed 

Simulation 

Nodes Ideal 3 Qubits 5 Qubits 7 Qubits 
0 0.00% 0.00% 0.00% 0.00% 
1 0.00% -11.88% -3.18% 7.78% 
2 50.00% 5.94% 45.31% 51.98% 
4 75.00% 8.91% 68.90% 73.75% 
8 87.50% 3.96% 79.97% 83.64% 
16 93.75% 2.97% 83.82% 87.47% 

 
In comparing the ideal and actual speed-ups, we expect the actual results to be 
slightly worse. This is due to overhead in both the computations performed on 
the head node as well as the network time required for distributing the 
components of the density matrix.  For example, for the single node case the 
ideal speed-up is zero, but we see that for the 3 qubit and 5 qubit examples the 
actual speed-up is negative.  This is expected because time is spent distributing 
the density matrix to that node, but no speed-up is incurred using a single node 
for the calculations.  Similarly, since the 3 qubit example can use at most 4 
nodes, we see the maximum speed-up occurs with 4 nodes.  Adding more nodes 
adds only additional processing overhead, reducing the performance 
improvement. 
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An interesting result found in Table 5 is that for the single node example, the 7 
qubit test case produces a positive speed-up.  This is in contrast to the zero-
percent ideal improvement, and negative actual speed-up anticipated.  Similarly, 
for the experiment with two nodes we again see that the 7 qubit test case has a 
slightly higher improvement than expected under ideal circumstances.  Dozens of 
experiments were run to verify that both of these results were indeed produced 
by the optimized implementation of Quantum eXpress.  Since they conflict with 
expectations, further investigation is required to find a valid explanation.  
Otherwise, the remaining results all met with our expectations, indicating that the 
optimization was quite successful.  A plot of the percent-improvements shown in 
Table 5 can be found in Figure 29. 
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Figure 29: Distributed Simulation Improvements Compared to Non-Distributed 

Implementation 

 
Table 6 shows how the optimal simulation times from Table 4 compare to the 
original implementation and the optimized simulation prior to distribution across 
the cluster. 
 

Table 6: Distributed Simulation Time Comparison 
 Original 

Decoherence 
Optimized 

Decoherence 
Optimized & Distributed 

Decoherence 
3 Qubit 5.2s 1.01s 0.92s 
5 Qubit 720.6s (12m 0.6s) 20.77s 3.36s 
7 Qubit 155191.4s (43h 6m 31s) 758s (12m 38s) 95s (1m 35s) 

 
Table 7 shows the percent improvement in simulation time from the original 
implementation to the optimized simulation, and from the original implementation 
to the optimized and distributed simulation. 
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Table 7: Decoherence Improvement from Original Implementation 
 Optimized Improvement 

(%) 
Optimized & Distributed 

Improvement (%) 
3 Qubit 80.58% 82.31% 
5 Qubit 97.12% 99.53% 
7 Qubit 99.51% 99.94% 

 
Figure 30 plots the data from Table 7, visualizing the performance improvement 
experienced as a result of the distributed simulation. 
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Figure 30: Decoherence Simulation Performance Improvement from Original 

Implementation 

 

4.3 Ideal vs. Actual Density Matrix Comparisons 
As described, QX is capable of simulating a quantum algorithm with both device 
and decoherence errors simulated.  It is also capable of simulating algorithms 
under ideal (error-free) circumstances.  During an algorithm's execution, it would 
be valuable to simulate, in parallel, the algorithm's execution in both ideal and 
actual circumstances and visualize the difference in the density matrix at each 
step in the algorithm.  This would enable researchers to see exactly how errors 
affect the state of the quantum system and how they propagate over time. 
 
The simulator was therefore updated to simulate and calculate the difference 
between the ideal (no errors, no decoherence) density matrix and the actual 
(error/decoherence-based) density matrix after each gate.  If the simulator is 
distributed over a cluster, the cluster is used for the actual simulation step and 
then the ideal simulation step.  These are not run in parallel because the actual 
simulation step requires significantly more time, and therefore splitting the cluster 
in half and simulating the two steps in parallel would be notably slower than 
running the ideal step after the actual.  The difference between the two matrices 
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is stored after each step, along with the Frobenius Norm of the difference 
between those two matrices. 
 
The Frobenius Norm is a generalized Euclidian norm that provides the ‘distance’ 
between two matrices [10].  The norm involves calculating the square root of the 
sum of the absolute squares of a matrix element: 
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4.3.1 Visualizing Matrix Differences 
Quantum eXpress has also been enhanced to visualize the difference after each 
gate, along with the Frobenius Norm.  Heatmaps are used to visualize the cells in 
the matrix that have non-zero elements, with different colors to represent various 
numeric cutoffs.  Cells are colored to indicate which have numerical values 
greater than user-defined thresholds.  This allows users to focus their attention 
on the areas with higher error values that desirable, without needing to examine 
the entire matrix.  Three colors are used, and they have default values 
associated.  Those colors and default cut-offs are shown in Table 8.  The color 
cutoff values can be changed directly in the QX user interface. 
 

Table 8: Ideal vs. Actual Heatmap Default Cutoffs 
Color Default Cutoff 

 Yellow  10-5

 Orange  10-3

 Red  10-1

 
Example visualizations are shown in Figure 31, for a system where N = 3. 
 

             
Figure 31: Example Matrix Difference Visualizations, N = 3 

 
The simulator does not calculate the ideal vs. actual density matrix differences by 
default.  The following parameter must be added to the states.xml configuration 
file, and set to ‘true’ in order for the differences to be calculated. 
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  <compIdealVSActual> true </compIdealVSActual> 

Figure 32: Ideal vs. Actual Matrix Calculation XML Parameter 

 

4.4 Simulator Verification  

4.4.1 Experimental Data Collection 
The first step to verifying the simulator was to find relevant ion trap quantum 
computer experiments.  We identified about 40 research groups working in this 
area.  We found the groups through the Internet, textbooks, technical papers, 
and Rome Labs contacts.  We determined that the following groups had the most 
advanced and relevant research programs: Innsbruck University, University of 
Michigan, National Institute of Standards and Technology (NIST), Oxford 
University, and Imperial College.  Some of the other groups that we investigated 
were the following: University of Aarhus, MIT, Georgia Tech, Johannes-
Gutenberg University, University of Washington, University of Illinois, Weizmann 
Institute of Science, and Penn State University. 
 
We reviewed all the publications of the more advanced and relevant groups, and 
identified three candidate algorithms: 
 

• Deutsch-Jozsa [11] 
• Grover [12] 
• Semi-classical quantum Fourier transform (QFT) [13] 

 
After reviewing the published data, we identified three main project risks and 
developed a plan to address them.  The first risk was that we needed to obtain 
complete and consistent experimental data.  To avoid a critical dependency on a 
single data source, we decided it would be best to attempt to obtain data for each 
of the candidate algorithms.  We planned to fill any gaps in the data that we 
obtained by making educated approximations based on the data we could find 
elsewhere in the literature.  We also decided to use MATLAB to test the 
algorithms that we found from the experimentalists to verify that they produced 
the correct results in the absence of noise. 
 
The second risk was that experimental decoherence data is difficult to obtain.  It 
was clear from our literature review that the experimentalists had only a 
rudimentary understanding of decoherence sources in their experiments.  We 
deferred decoherence analysis to future research.  We similarly deferred testing 
any of the simulator’s capabilities that would not be required for the experiments 
we modeled. 
 
To model each algorithm, we required the following: 
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• the algorithm as implemented in the experiment 
• gate Hamiltonians 
• gate application times 
• gate noise estimates 
• decoherence data 
• experimental results 

 
Some of this data was available in the published papers.  To obtain what wasn’t 
readily available, we attended the “Workshop on Trapped Ion Quantum 
Computing” at NIST, February 21 – 24, 2006.  We met experimentalists from 
each of the three relevant research groups and secured most of the data that we 
needed. 
 
We confirmed with the experimentalists that they do not have sufficient 
understanding of decoherence in their experiments for us to model it.  Their 
experiments are focused on producing working algorithms, and little research on 
analysis of noise sources had been done to this point.  We also were unable to 
obtain the Hamiltonians and gate noise estimates for Michigan’s Grover 
algorithm experiments.  We filled in the gaps using the other experiments and 
other published papers from the Michigan group. 
 
We tested each of the experimental algorithms in MATLAB and verified that they 
produce the correct results in the absence of noise. 

4.4.2 Modeling Experiments in the Simulator 
To model the experimental algorithms, we had to translate the experimental data 
into simulation designs and input the designs into Quantum eXpress as XML 
files.  In the remainder of this section, we describe the purpose of each algorithm 
and its Quantum eXpress design. 
 
Deutsch-Jozsa Algorithm 
The purpose of the Deutsch-Jozsa algorithm as experimentally implemented is to 
determine whether a binary function f with a binary input is constant or balanced 
[11].  If it is constant, then it will produce either 0 or 1, regardless of its input.  If it 
is balanced, then it will either reproduce its input, or produce the complement of 
its input (see Table 9). 
 
Figure 33 shows the two-qubit Deutsch-Jozsa algorithm, which works as follows.  
The primary qubit “a” is initialized to |0>, and the secondary qubit “w” is initialized 
to |1>.  Each qubit undergoes a rotation to put it in a superposition state.  Then 
there is a unitary operator that operates on both qubits and depends on which 
case is being implemented (see Table 9).  The effect of the operator is to perform 
addition modulo 2 of the secondary qubit and the function evaluated with the 
primary qubit.  The qubits then undergo inverse rotations to prepare for 
measurement.  Finally, the probability that the primary qubit is in state |1> is 
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measured.  If the function is constant, then the probability should be zero, and if 
the function is balanced, then the probability should be unity. 
 

Table 9: Constant and Balanced Functions 
 Constant Functions Balanced Functions 
 Case 1 Case 2 Case 3 Case 4 

f(0) 0 1 0 1 
f(1) 0 1 1 0 

 

 
Figure 33: Deutsch-Jozsa Algorithm [11] 

 

 
Figure 34: Experimental Implementation of the Deutsch-Jozsa Algorithm [11] 
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Note that the circuit is measuring a global property of the function f, which is the 
strength of quantum algorithms.  The advantage of the quantum algorithm over a  
classical algorithm is that the quantum algorithm only requires a single evaluation 
of the function, while classically two evaluations are required. 
 
Figure 34 shows the experimental implementation of the algorithm for each case.  
The circuit design for the simulator is the same as in the figure, except there is an 
additional working qubit that is initialized to |0>, runs across the top of each 
circuit, and is covered by the swap and phase (Φ ) gates.  The additional qubit is 
necessary because the experiment takes the system out of the two-qubit 
computational basis in the intermediate portion of the calculation, and the 
simulator cannot handle that without a third qubit. 
 

 
Figure 35: GUI View of the Deutsch-Jozsa Circuits 

 
The rotation gates ),( φθR  are generated by applying the carrier Hamiltonian for a 
time t : 
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where Ω= /θt , and  is a parameter that represents the strength of the 
coupling between the ion and the laser that is used to manipulate it.  Simulations 

Ω
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are independent of the value of Ω  because the Hamiltonian and gate time 
always appear in the combination , and tH C Ω  cancels out of this product. 
 
The swap and phase gates are defined as sequences of blue sideband rotations: 
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Table 10: Deutsch-Jozsa Simulator Results with No Noise 

Case 1 Case 2 
State Probability State Probability 
|000> 0.0 |000> 2.3034916202E-16 
|001> 0.9999999366 |001> 0.9999970832     
|010> 0.0 |010> 2.3591297278E-16 
|011> 0.0 |011> 1.3025527459E-12 
|100> 0.0 |100> 5.5554475174E-35 
|101> 0.0 |101> 0.0              
|110> 0.0 |110> 5.5554475196E-35 
|111> 0.0 |111> 2.3034916202E-16 

 
Case 3 Case 4 

State Probability State Probability 
|000> 5.6249534896E-18 |000> 1.1842324339E-17 
|001> 1.0063527674E-13 |001> 1.0041509916E-13 
|010> 5.6249534873E-18 |010> 1.1842324344E-17 
|011> 0.9999993025 |011> 0.9999982879     
|100> 0.0 |100> 0.0              
|101> 0.0 |101> 0.0              
|110> 0.0 |110> 0.0              
|111> 0.0 |111> 0.0              

 
Note that gates are applied in opposite order of these rotation matrix 
multiplications, and 
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),( φθ+R  is generated by applying the blue sideband Hamiltonian for a time t : 
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where Ω= /θt , and Ω  is an arbitrary parameter that represents the strength of 
the coupling between the ion and the laser that is used to manipulate it. 
 
The simulator cannot handle Hamiltonians with parameters in their matrix 
elements, so separate gates had to be constructed for each set of angle 
arguments.  Figure 35 shows what the circuits look like in the Quantum eXpress 
GUI.  For each case, the initial state is |001>. 
 
Table 10 shows the simulator’s output for each case in the absence of gate noise 
and decoherence.  Note that the probability that the primary qubit (the second of 
the three qubits) is in state |1> is very close to zero for cases 1 and 2, and very 
close to unity for cases 3 and 4.  That is the expected result.  The deviations from 
the ideal results are due to numerical approximations and round-off errors. 
 
Grover Algorithm 
The purpose of the Grover algorithm as experimentally implemented is to find a 
target state in a search space of four states [12].  Figure 36 is a schematic 
illustration of the general algorithm.  The state is initialized to all zeros and then 
undergoes a Hadamard transformation that puts it in an equal superposition of all 
states (see Figure 36a).  Then a portion of the circuit called the “oracle” marks 
the target state by flipping the sign of its amplitude in the superposition (see 
Figure 36b).  Two additional Hadamard transformations with a phase gate 
between them then amplify the amplitude of the target state (see Figure 36c).  
Finally, the state is measured, and hopefully is the target state.  To increase the 
probability of success, steps (b) and (c) can be repeated many times.  In the 
special case of a 4-D search space, only one iteration is necessary to guarantee 
success. 
 
Figure 37 shows the two-qubit Grover algorithm as implemented in the 
experiment.  Both qubits are initialized to |0>, and then undergo rotations to put 
them in superposition states.  Then the rotations (in the dark boxes) swap the 
target state (which is marked by choosing the appropriate angles α  and β ) and 
the |11> state.  Next, the controlled Z gate portion of the circuit flips the sign of 
the |11> state.  Then the rotations in the dark boxes swap the target state and 
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the |11> state again, and the portion of the circuit in dark gray amplifies the 
amplitude of the target state so its magnitude is unity. 
 

 
Figure 36: Grover Algorithm [12] 

 

 
Figure 37: Experimental Implementation of the Grover Algorithm [12] 

 
For Quantum eXpress, the circuit design is the same as in Figure 37.  We 
approximated ),( φθR to be the same as for the Deutsch-Jozsa circuits, and 
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GMS is generated by applying the Mølmer-Sørensen Hamiltonian for a time t  [14]: 
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where )2/( Ω= πt , and  is an arbitrary parameter that represents the strength of 
the coupling between the ion and the laser that is used to manipulate it. 

Ω

 
Since the simulator cannot handle Hamiltonians with parameters in their matrix 
elements, separate gates again had to be constructed for each set of angle 
arguments.  Figure 38 shows the circuit for the |00> target state in the Quantum 
eXpress GUI.  The circuits for the other target states have the same structure.  
For each target state, the initial state is |00>. 
 

 
Figure 38: GUI View of a Grover Circuit 

 
Table 11: Grover Simulator Results with No Noise 

 Probabilities 
State |00> Target |01> Target |10> Target |11> Target 
|00> 0.9999822 2.0313070E-15 2.0653559E-15 2.4729053E-15 
|01> 5.0157198E-17 0.9999833     8.1217639E-17 2.4288804E-15 
|10> 1.8642173E-16 1.5700924E-16 0.9999833     2.2963545E-15 
|11> 1.8448619E-15 8.9420984E-17 1.0097672E-24 0.9999843 

 
Table 11 shows the simulator’s output for each case in the absence of gate noise 
and decoherence.  Note that the probability that the target state is produced by 
the circuit is very close to unity, as expected.  The deviations from the ideal 
results are due to numerical approximations and round-off errors. 
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Semi-classical QFT Algorithm 
The purpose of the semi-classical QFT algorithm as experimentally implemented 
is to perform the quantum analogue of the discrete Fourier transform on a three-
qubit state [13].  The general QFT on a computational basis state in an -
dimensional space is given by: 

N
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0

/21 N

j

Nkji je
N

k π . (40)

 
The transformation rotates the basis state into a superposition of all the states in 
the space, with the given complex amplitudes. 
 
The semi-classical implementation loses relative phase information for the output 
state but is experimentally much simpler to implement.  The algorithm can 
intuitively be thought of as measuring the frequency components (or the 
periodicity) of the input state. 
 

 
Figure 39: Experimental Implementation of the Semi-classical QFT Algorithm 

 
Figure 39 shows the experimental implementation of the algorithm.  The figure is 
a modified version of that published in [13].  In order to complete the testing, we 
had to work with our contact at NIST to translate their published algorithm into a 
standard quantum computing circuit diagram.  The modifications have no effect 
on the operation of the algorithm, and the circuit design for the simulator is the 
same as in Figure 39. 
 
The algorithm works by performing a number of single-qubit rotations to put the 
qubits into superposition states, and then performing a series of measurements 
and controlled rotations to collapse qubit states to classical information and 
selectively rotate the remaining qubits based on the measurement results. 
 
In Figure 39 we used the short-hand notation 
 

)0,()( θθ RRx = , (41)
 

)
2

,()( πθθ RRy = , (42)

 

43 



where ),( φθR  is the same as in the Deutsch-Jozsa circuit.  Dashed lines denote 
classical information.  Empty circles denote rotation if and only if the control qubit 
is |0>, and solid circles denote rotation if and only if the control qubit is |1>.  The 
controlled rotations are performed using composite Hamiltonians expressed in 
terms of the carrier Hamiltonian: 
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Figure 40: GUI View of the Semi-classical QFT Circuit 

 
Again, the simulator cannot handle Hamiltonians with parameters in their matrix 
elements, so separate gates had to be constructed for each set of angle 
arguments.  Figure 40 shows what the circuit looks like in the Quantum eXpress 
GUI.  There is only one circuit for this algorithm, but there are five different input 
states, corresponding to states of period 1, 2, 3 (approximately), 4, and 8. 
 
Table 12 shows the simulator’s output for each input state in the absence of gate 
noise and decoherence.  The input states are listed in the top row (in order of 
periodicity), and the output state probabilities are listed in the columns.  Note that 
the circuit as performed in the experiment produces its output with the bits in 
reverse order.  We have accounted for this in the table. 
 
The periodicity of an input state can be determined by counting how many non-
negligible output state probabilities there are for the input state.  The non-
negligible probabilities should be roughly equal and sum to unity.  For example, 
the input state |011>+|111> has four non-negligible output probabilities, each 
approximately 0.25, indicating that this input state has a period of four.  That 
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means that when stepping through the eight three-qubit basis states (listed in the 
first column of the table), every fourth state will be a component of the input 
state. 
 

Table 12: Semi-classical QFT Simulator Results with No Noise 
 

State 
Equal  

Superposition 
(Period 1) 

|001>+|011>+ 
|101>+|111> 
(Period 2) 

|001>+|011>+ 
|100>+|110> 
(Period 3) 

|011>+|111> 
 

(Period 4) 

|111> 
 

(Period 8) 
|000> 0.9999968     0.4999984 0.4999984 0.2499992 0.1249996 
|001> 4.6116731E-18 2.7014556E-18 0.0366115     2.7014555E-18 0.1249996 
|010> 1.9794813E-17 3.9420938E-17 4.9908754E-18 0.2499992     0.1249996 
|011> 7.9123796E-19 2.7014555E-18 0.2133877     2.7014554E-18 0.1249996 
|100> 5.1449158E-17 0.4999984     5.5992798E-17 0.2499992     0.1249996 
|101> 7.9123804E-19 2.7014556E-18 0.2133877     2.7014555E-18 0.1249996 
|110> 1.9794814E-17 3.9420938E-17 4.9908760E-18 0.2499992     0.1249996 
|111> 4.6116729E-18 2.7014554E-18 0.0366115     2.7014554E-18 0.1249996 

 
Note that there is no true period-three state in an eight-dimensional space, so the 
results for that input state are approximate.  That is why it has three large output 
probabilities and two small ones.  The other deviations from perfection are due to 
numerical approximations and round-off errors. 

4.4.3 Results Analysis 
Comparison with Ideal Results 
We compared the simulation results in the absence of gate noise and 
decoherence with the ideal results for all cases of each algorithm.  By “ideal 
results,” we mean the theoretical results of the algorithm, which is what would be 
obtained in the absence of noise, decoherence, experimental error, etc.  For 
example, an ideal implementation of the Grover algorithm would find the marked 
state (i.e. produce it as the output of the algorithm) 100% of the time. 
 

Table 13: Simulation Maximum Absolute Probability Error with No Noise (%) 
Case Deutsch-Jozsa Grover Semi-classical QFT 

1 0.000006 0.002 0.0003 
2 0.0003 0.002 0.0002 
3 0.00007 0.002 0.0002 
4 0.0002 0.002 0.00008 
5   0.00004 

 
Based on the approximations that Quantum eXpress makes, we expected that 
the simulator results should match the ideal results with less than 0.01% absolute 
probability error.  Table 13 shows the maximum absolute probability error for all 
states for each case of each algorithm.  All the errors are well below the 
expected threshold.  The maximum of all of the errors is 0.002%, for the Grover 
algorithm.  This indicates that in the absence of gate noise and decoherence, 
Quantum eXpress accurately models the ion trap quantum computer algorithms 
that we selected. 
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Comparison with Experimental Results 
To prepare for comparison with experimental results, we simulated each case of 
each algorithm with each gate noise level varying from 0% to 20% in increments 
of 1% simultaneously.  The noise percentage defines the standard deviation of a 
Gaussian distribution of gate application times in terms of the target time.  We 
ran each simulation 450 times to get a statistical distribution of results. 
 
To control the simulations, we wrote MATLAB code to perform the following 
tasks: 

• update the XML files for the desired noise level 
• run the simulator 
• extract the probabilities of the output states 
• compare the results to the ideal cases and the experiments 

 
We made two comparisons with the experimental results.  First we compared the 
fidelities of the experiments with the fidelities of the simulations.  For this 
comparison, we used gate noise levels of 2% for the Deutsch-Jozsa and Grover 
algorithms, and 1% for the semi-classical QFT.  These numbers are based on 
estimates we received from the experimentalists.  By “fidelity,” for the Deutsch-
Jozsa and Grover algorithms we mean the probability that the algorithm 
produced the correct result (e.g., did the Deutsch-Jozsa algorithm correctly 
determine whether the function was constant or balanced).  For the semi-
classical QFT, we used the squared statistical overlap (SSO) metric that the 
experimentalists used [13]: 
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Table 14: Experimental and Simulation Fidelities (%) 

Deutsch-Jozsa Grover Semi-classical QFT Case 
Exp QX Exp QX Exp QX 

1 98.1(6) 99.947(3) 64(2) 98.21(7) 87(1) 99.828(5) 
2 91.3(6) 99.75(1) 62(2) 98.20(7) 88(1) 99.867(4) 
3 97.5(4) 99.877(5) 49(2) 98.18(7) 88(1) 99.867(4) 
4 97.5(2) 99.881(4) 65(2) 98.35(6) 96(1) 99.919(3) 
5     99(1) 99.940(3) 

 
where  and  are the measured and expected probabilities of basis state jm je j , 
respectively.  The SSO is a measure of the similarity of two states in the Hilbert 
space and varies from 0 to 1. 
 
Table 14 shows the experimental and simulation fidelities.  The numbers in 
parentheses are the one-standard-deviation uncertainties in the final digits.  The 
simulations generally have higher fidelities than the experiments.  This was 
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expected because we did not model decoherence or systematic errors in state 
preparation or measurement.  The experimental fidelities are lowest for the 
Grover algorithm (especially the third case), which apparently is the most difficult 
algorithm to implement.  The fidelity of the semi-classical QFT experiment for the 
period-eight state is particularly high, probably because the initialization of this 
state is simple. 
 
For the second comparison with experiment, we determined the minimum gate 
noises that were necessary for the experimental and simulation fidelities to be 
equivalent (see Table 15).  We considered two fidelities to be equivalent if their 
one-standard-deviation ranges overlapped.  We determined the required noise 
independently for each case of each algorithm.  These increased gate noises are 
our attempt to model the additional experimental error sources in the absence of 
quantitative information on decoherence. 
 

Table 15: Minimum Gate Noise for Comparable Experimental and Simulation 
Fidelities 

Deutsch-Jozsa Grover Semi-classical QFT Case 
Exp QX Noise Exp QX Noise Exp QX Noise 

1 98.1(6) 98.55(9) 11 64(2) 64(1) 10 87(1) 86.8(4) 9 
2 91.3(6) 91.7(3) 12 62(2) 63(1) 11 88(1) 88.6(4) 10 
3 97.5(4) 97.55(9) 9 49(2) 51(1) 13 88(1) 88.8(4) 10 
4 97.5(2) 97.4(1) 9 65(2) 65(1) 11 96(1) 96.3(1) 7 
5       99(1) 99.9997 0 

 
The table shows the experimental fidelities, the comparable simulation fidelities, 
and the gate noise levels that produced the simulation fidelities.  All the entries 
other than the case indices are percentages.  The results indicate that we 
generally require about 10% noise in the gate application times for the 
experimental and simulation results to be comparable.  The poor fidelity for the 
third case of the Grover algorithm requires a higher noise level (13%), and the 
excellent fidelity for the period-eight state of the semi-classical QFT algorithm 
does not require any noise. 

4.5 Field Programmable Gate Array-Accelerated Simulation 
As described previously, Quantum eXpress uses the density matrix 
representation of the quantum state, requiring a 2Nx2N matrix to represent an N-
qubit system.  Since the size of the density matrix grows exponentially in the 
number of qubits, the size of the matrix multiplications needed to simulate a 
quantum gate application also grows exponentially.  This creates a tremendous 
computational burden, making it important to explore alternative architectures for 
the quantum simulator.  Field Programmable Gate Arrays (FPGAs) are one such 
alternative architecture [15]. 
 
FPGAs are semiconductor-based devices that contain user programmable logic 
components.  These components provide basic logic functions such as AND, 
OR, XOR, and NOT functions.  Starting with a blank piece of silicon, large and 
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complex systems can be constructed from these components.  By carefully 
crafting the memory architecture, an FPGA design can avoid the Von-Neumann 
bottleneck that plagues general purpose processors (GPPs).  The Von-Neumann 
bottleneck refers to the limited bandwidth between the CPU and main memory; 
only one memory request can be completed at a time.  Since FPGAs can avoid 
the sequential memory access limitation, they are very attractive for executing 
parallelized algorithms.  The major drawback of FPGAs is the time and effort 
required to design and implement a highly optimized algorithm. 
 
Prior Art 
As the interest surrounding quantum computing has increased, researchers have 
been developing various simulators, a few of which were based on FPGAs.  The 
scope of this research has been limited however, as many of the simulators are 
applicable to only a narrow range of quantum algorithms. 
 
Negovetic et al. of the Portland Quantum Logic Group at Portland State 
University developed an FPGA-based quantum emulator [16].  Their emulator 
was implemented using Verilog and can model quantum algorithms with one or 
two qubits.  Their emulator was evaluated on an algorithm that consisted of two 
inverters and a Hadamard gate. 
 
Fujishima, along with other researchers at the School of Frontier Sciences at the 
University of Tokyo, developed their own emulator [17].  Theirs works as a 
quantum index processor (QIP), which means that the quantum states are not 
stored, only the indices of the "1"'s in the quantum state.  This limits the operation 
of the emulator, as it must use pre-defined lookup tables to simulate a quantum 
gate. 
 
Finally, a group from McGill University also developed a quantum algorithm 
emulator in an FPGA [18].  In their approach, they model quantum algorithms as 
"quantum circuits."  These quantum circuits are generated using scripts the 
group created.  These scripts output VHDL, which can then be compiled and 
executed on an FPGA.  They support Walsh-Hadamard, Phase Shift, X, CNot, 
and Z gates. 

4.5.1 FPGA Hardware & Tools 
GE Global Research has had prior experience using FPGA’s to optimize a 
diverse set of applications.  From this experience, GEGR has built up an array of 
FPGA hardware and design tools, which were leveraged to design and simulate 
an FPGA-based implementation of the Quantum eXpress engine. 
 
FPGA Hardware 
The objective of this work was to develop and simulate an FPGA design that 
would provide an accurate understanding of real-world performance.  To achieve 
this objective the design was targeted to a particular FPGA device, setting 
constraints such as the amount of memory addressable, the number of 
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multipliers that could be instantiated, and the clock speed at which the design 
would operate.  Quantum eXpress is very intense in terms of complex floating 
point arithmetic.  Floating point multiplications in particular use considerable 
FPGA design space, making it necessary to choose a device that was relatively 
large in terms of the number of resources available. 
 
The FPGA device chosen was a Xilinx xc2vp100 on a BenBLUE-III module [19].  
The xc2vp100 FPGA is in the Xilinx Virtex-II Pro family of parts.  It contains 
99,216 logic cells along with 7,992 Kbits of Block RAM.  This is the second 
largest FPGA in the Xilinx Virtex-II Pro family.  Paired with the BenBLUE-III, the 
module contains 64 MBytes of Zero Bus Turnaround (ZBT) SRAM in 8 
independent banks with a data rate of 166 MHz.  This whole module resides on a 
Nallatech Bennuey-4E PCI motherboard [20]. 
 
Of particular importance is the ZBT SRAM.  This memory is where the density 
matrix and Hamiltonian matrices are stored.  ZBT SRAM was used for two 
reasons.  First, these matrices are too large to fit into the FPGA's BRAM with 
enough space left over to instantiate the design logic necessary for the quantum 
simulator.  Second, the ZBT (Zero Bus Turnaround) SRAM is fast–there is no 
bus latency associated with the memory, and therefore there are no overhead 
cycles when accessing the SRAM. 
 
The Virtex-II Pro family, including the xc2vp100 chosen for this project, is based 
on a CMOS SRAM fabric.  Unlike other FPGAs based on technologies such as 
anti-fuse, SRAM-based devices can be repeatedly reprogrammed.  
Reconfigurability is advantageous for a number of reasons.  First, it is particularly 
useful during the debugging phase.  If a design that was programmed onto an 
FPGA contained errors, the FPGA can simply be re-written rather than 
discarded.  This is also useful since the FPGA can be upgraded in the field.  
Another advantage comes from the fact that multiple FPGA designs can be 
created to perform specific tasks.  When a specific task is required, its associated 
design can be loaded onto the FPGA. 
 
FPGA Design Tools 
Along with access to hardware, GEGR also has licenses available to several 
software packages that aid in the development of FPGA designs.  This includes 
Nallatech's DIMETalk 3 software [21].  DIMETalk is a GUI-based FPGA design 
environment.  It allows users to build communication networks between algorithm 
nodes, memory, and interfaces to other FPGAs and other computing systems. 
 
Also used was Nallatech's DIME-C, which is a C-to-VHDL functional translator.  
This was available through an early access program as the software is not yet 
freely available.  DIME-C creates VHDL components that plug into the DIMETalk 
framework. 
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Initially, CVER, an open-source Verilog simulator, was used for simulating the 
FPGA accelerator [22].  However, Nallatech's tools generate VHDL code, not 
Verilog.  Fortunately an evaluation license of Active-HDL 7.1 was obtained from 
Aldec, replacing CVER and allowing us to simulate directly from the VHDL code 
[23]. 

4.5.2 FPGA Design 
The FPGA's greatest strength comes from its ability to take advantage of fine-
grained parallelism in designs.  This parallelism is necessary to get any sort of 
speed-up in a design ported to an FPGA.  FPGAs run at much lower clock rates 
than their general purpose processing counterparts.  The maximum clock rate for 
most designs using the Xilinx Virtex-II Pro family of devices is less than 200 MHz, 
while the latest offerings for general purpose processors (GPPs) are all over 2 
GHz.  This means the same algorithm implemented without parallelism will 
execute significantly faster on a GPP than on an FPGA. 
 
FPGA Architecture for Quantum eXpress 
In determining what aspect of the simulator to translate to the FPGA, it was 
determined that the gate application portion of the design (covered in Section 
4.1.2) was most suited.  This is because the complex matrix multiplications in 
that step can be highly parallelized.  To achieve a high degree of parallelism the 
matrices must be stored on fast memory accessible to the FPGA.  Thus, the 
memory and memory controller were placed on the FPGA, as well, as shown in 
Figure 41.  This reduced the data transfers from the host PC and the FPGA. 
 

 

Front End &
Initialization

Core 
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Density Matrix 
& Temps 

Processor

FPGA Memory 

 
Figure 41: FPGA & GPP Simulator Architecture 

 
The general-purpose QX implementation starts with three inputs and consists of 
four steps.  The inputs are the density matrix, the Hamiltonian matrix, and the 
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gate indices to which the quantum gate is applied.  The indices for the gate are 
not necessarily in sequential order and may affect indices distributed throughout 
the density matrix.  This can be a serious detriment to performance on a general-
purpose processor.  As an optimization, Quantum eXpress reorders the density 
matrix so that the bits that will be operated on share a continuous memory space. 
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Figure 42: Architecture of Original GPP Implementation 

 
After the density matrix is in standard form, the gate application computation is 
performed, as shown in Figure 42.  This is the most computationally intense part 
of the simulation, consisting of a series of complex matrix multiplications.  The 
gate application routine is performed on the density matrix 100 times.  Finally, the 
density matrix is permuted again to bring it back to its original form and the 
computation is complete. 
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An advantage of the FPGA-based implementation is that there is no need to re-
arrange the density matrix before performing the gate application.  An FPGA has 
no cache.  As such, there is no penalty for a cache miss like on a general-
purpose processor.  On an FPGA the time to read and write to a memory location 
is constant, independent of the address that is being referenced.  These factors 
have the effect of greatly reducing the complexity of the FPGA architecture. 
 

Density Matrix Hamiltonian Gate Indices

Quantum System

Build Memory Map

Mapf

Variables

Apply Gate
f1

f2

dt

Repeat ~100

Result (New 
Density Matrix)  

Figure 43: Architecture of FPGA Implementation 

 
For the FPGA-based implementation, a memory map is still created as shown in 
Figure 43.  The mapping is used to make the density matrix appear sequential in 
terms of the gate application, but the physical location of the bits in memory are 
not changed.  This greatly simplifies the gate application algorithm.  And since 
the density matrix does not have to be permuted, a copy does not have to be 
created, saving both time and memory. 
 
Another major architecture change lies in the gate application computation.  
Originally, this consisted of a single operating thread that computed each 
element in the resulting density matrix serially.  Taking advantage of the fine-
grained parallelism of the FPGA, multiple operations can be computed at once.  
This is particularly useful for complex matrix multiplications.  For example, the 
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individual element-wise multiplications of the real and imaginary parts can be 
computed simultaneously.  Results of the intermediate steps are then summed to 
get the final complex multiplication result.  Further, for a gate matrix of size 2gx2g, 
2g element-wise multiplications can be computed at once.  This offers significant 
savings; particularly as the gate size g increases.  In the original complex 
multiplication implementation the simple element-wise multiplication needed to 
be iterated over 22g times.  After the optimization, these 22g iterations were 
replaced with 2g complex multiplications, dramatically reducing the total number 
of operations necessary to complete one cycle of the gate application.  Figure 44 
illustrates the reduction in the number of iterations necessary to apply a gate 
operating on two qubits.  Figure 45 shows the iteration reduction for a gate size 
of three qubits.  For both cases, as the number of qubits in the system increases, 
the effect of the optimization becomes more and more pronounced. 
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Figure 44: Iteration Reduction in Evaluating Master Equation for Gate Size g = 2 
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Figure 45: Iteration Reduction in Evaluating Master Equation for Gate Size g = 3 
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The fine-grained parallelism affects the pipeline of the FPGA.  As expected, the 
number of operations that occur in parallel dramatically increases, increasing the 
FPGA's resource utilization.  Pre- and post-optimization pipeline diagrams 
generated by Nallatech's DIMEC tools are shown in Figure 46 and Figure 47, 
respectively, showing the pipeline length in the horizontal axis and the parallel 
operations in the vertical axis. 
 

 
Figure 46: Un-Optimized Pipeline 

 
 

 
Figure 47: Optimized Pipeline 

 
The increase in the pipeline width due to the parallelism from loop unrolling is 
quite noticeable.  For the initial QX implementation, iterating over the same code 
many times performed much of the computation.  After the FPGA optimizations 
many more operations occur in parallel.  Towards the end of each of the loops in 
the pipeline diagram the number of parallel operations converge until there is 
only one operation occurring—the results from the previous operations are 
combined to produce a single element in the density matrix. 
 
The design of the FPGA-accelerated quantum simulator was done using 
DIMETalk and DIMEC.  DIMEC was used to develop the computationally intense 
gate application portion of the design.  DIMEC claims to be an ANSI C-to-VHDL 
functional translator, however, it currently suffers from a number of limitations.  
DIMEC is unable to parse ANSI C pointers, multi-dimensional arrays, structures, 
unions, enumerated types, switch statements, and do-while loops.  It was rather 
awkward working around its gaps in the ANSI C specification, especially when 
trying to port previously developed source code.  Even with these restrictions 
DIMEC is very powerful for rapidly implementing FPGA-accelerated algorithms, 
however. 
 
Using C as a code base was particularly beneficial for several reasons.  Standard 
tools can be used for the initial design, such as a familiar C development 
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environment.  Debugging the initial implementation was easier because the 
availability of a standard C compiler and debugging tools. 
 
After the algorithm was validated, it was modified to fit conventions of DIMEC.  
These conventions include specifying the inputs and outputs to the algorithm 
along with the storage format of these parameters.  The parameters consist of 
the density matrix, gate Hamiltonian, time for each iteration of the gate 
application, and the number of times to iterate.  The density matrix and the gate 
Hamiltonian are stored on the on-board, off-chip ZBT SRAM, as mentioned 
previously.  It should be noted that the data type used for storing data in SRAM is 
slightly different than that used for performing the computations on the FPGA.  
These differences are described in Appendix A – FPGA Floating Point Formats. 
 
After creating the DIMEC gate application module it was placed into the 
DIMETalk environment.  The DIMETalk design environment allows the user to 
create a system communication diagram to specify the high-level design.  This is 
done by first specifying the communication host, in this case a PCI host interface.  
From there, the system components are laid out.  Four ZBT SRAM memory 
nodes were created, one for each of the real and imaginary components of the 
density matrix and Hamiltonian.  A memory map is used by the DIMEC 
component for access to BRAMs.  Routers are instantiated to handle the 
communication between all of the DIMETalk nodes.  Finally, the design is 
"wrapped" with a description of the hardware onto which it will be programmed, 
as shown in Figure 48. 
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Figure 48: DIMETalk Diagram for the FPGA Accelerator 

 
After creating this diagram, DIMETalk generates a VHDL description of the entire 
system.  These components can then be synthesized, placed, routed, and put 
onto a hardware device.  None of the I/O associated with the design has been 
constrained to the hardware, however.  For it to actually operate on a hardware 
device, the I/O must be assigned to specific pins on the FPGA. 

4.5.3 Design Limitations 
The first major limitation of the design is that it can only simulate quantum 
systems that are 6 qubits or smaller.  This limitation comes from the fact that the 
device selected, the BenBlue III, contains 64 MBytes of ZBT SRAM in 8 
independent banks.  At 32 bits per element in the density matrix, the largest 
system that could be stored in a single bank of SRAM was 6 qubits.  This is with 
the density matrix split so that its real and imaginary components occupy 
separate memory banks.  If a more complex memory controller was created, a 
larger density matrix could be stored that spans different banks in the SRAM. 
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Another limitation of this design is that the number of qubits in the system is fixed 
at design time and cannot be changed dynamically at run time with no loss of 
resources.  In order to simulate quantum systems with different sizes of qubits 
and different gate sizes there are two options. 
 
The first option involves creating an overly large design with the maximum 
number of qubits and gate sizes.  This design would be created and loaded onto 
the FPGA for each gate simulation.  A parameter would identify how many of the 
total qubits are actually being utilized.  The design would then ignore the unused 
qubits.  However, by loading the FPGA with an overly large design, the design 
itself is not optimal and there is overhead from performing needless 
computations.  Also, since resources on the FPGA are being allocated for no 
reason, there is an additional impact from unnecessary power consumption.  This 
option was chosen for implementation in this research effort. 
 
The second option would involve pre-designing, creating, and compiling bit-files 
for every possible system size that could be simulated.  These bit-files could be 
stored in a repository and programmed on the FPGA just before simulation.  This 
scheme provides the most hardware efficiency at the cost of a significant amount 
of up-front work to create all of the bit-files. 

4.5.4 Testing Procedure 
The FPGA-based design was simulated using Aldec's Active-HDL 7.1, an easy-
to-use simulation environment for VHDL.  Two of the three test cases from 
Section 4.1.1 could fit within the FPGA simulator design: the 3 qubit and 5 qubit 
ones.  The Active HDL simulator was paused after each gate application routine 
had completed, to record its execution time.  This time was benchmarked against 
the execution time of the gate application portion of the single processor 
implementation of Quantum eXpress.  Quantum eXpress was run on an HP 
wx9300 workstation based on an AMD Opteron 280 dual processor dual core 
system clocked at 2.4 GHz.  The system had 4GB of RAM running Windows XP 
Professional x64 Edition and Sun's Java 1.5.0-b64 JVM, a high-end workstation 
at the time of this writing. 
 
The time used to compare the GPP and FPGA simulations was the sum of the 
gate application times.  Additional overhead for the algorithm configuration, such 
as data load time, was not considered.  The speedup of the FPGA vs. the single 
processor implementation was calculated using the equation: 
 

∑
∑=

n timesapplicatio gate simulationFPGA 
n timesapplicatio gate QX

up-Speed . (46)

 

4.5.5 Results 
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Figure 49 shows the speed-ups achieved for the two algorithms.  It was found 
that the FPGA simulator took roughly 10ms to apply each CNOT gate in the 3-
qubit test case.  For the total algorithm, the FPGA speedup over the single 
processor implementation of Quantum eXpress was 12.4x.  For the 5-qubit test 
case, the speedup of the FPGA implementation was found to be 26.9x over the 
single processor implementation. 
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Figure 49: Speed-up of FPGA vs. Single Processor GPP Implementation 

 
For the 3-qubit test case all of the gates in the algorithm are identical.  The 
speedup for each individual gate was 12.4x and thus, aggregating this speedup 
across the algorithm yields the same speedup. 
 
The 5-qubit test case is composed of two types of gates.  The first set is three 
CCNOT gates that have a gate width of 3.  The second set is 3 CNOT gates that 
operate on 2 of the 5 qubits in the system.  The average speedup for the 3-qubit 
CCNOT gates was 35.5x and the speedup for the 2-qubit CNOT gates was 
18.2x.  As expected, as the number of qubits in the system increased, so did the 
speedup.  Additionally, as the gate width increased, the speedup also increased.  
The FPGA accelerator was designed to take advantage of the fine-grained 
parallelism available during the gate application.  As the gate width increases, 
there is more opportunity for parallelism and thus we get a bigger speedup.  The 
FPGA implementation appears to scale very well as the size of the quantum 
system increases. 
 
Single vs. Double Precision 
All of the floating point cores used in the FPGA implementation are single 
precision.  In Quantum eXpress, all of the mathematical operations are 
performed using double precision floating point.  In order to assess the impact of 
reducing the precision, we calculated the root mean-squared error (RMSE) 
across all of the final state measurements.  This came to 3.08*10-8 for the 3-qubit 
test case, the errors for which are shown in Table 16. 
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Table 16: Precision Comparison for 3 Qubit Test Case 

Quantum State GPP double FPGA single Error 
|000> 0.5 0.5 0 
|001> 0 0 0 
|010> 0 0 0 
|011> 0 0 0 
|100> 9.64E-05 9.64E-05 -1.09539E-09 
|101> 0.499661 0.499661 4.7733E-08 
|110> 1.96E-04 1.96E-04 1.21768E-08 
|111> 4.67E-05 4.68E-05 -7.20057E-08 

 sum = 1 sum = 1 RMSE = 3.08479E-08 
 
For the second test case, the root mean-squared error came to 3.45*10-6, with 
the individual state errors shown in Table 17.  The RMSE for this case was 
several orders of magnitude greater than in the previous test case.  This is 
because after each gate in an algorithm, the loss in precision is being aggregated 
and the errors become more pronounced.  At this stage, the error is still 
insignificant but for larger algorithms, the error could accumulate to unacceptable 
levels.  At what size algorithm the errors become unacceptable requires further 
investigation. 
 

Table 17: Precision Comparison for 5 Qubit Test Case 

Quantum State GPP double FPGA single Error 
|00000> 0 0 0 
|11100> 4.64E-07 4.61E-07 3.15396E-09 
|11101> 6.83E-04 6.77E-04 5.24537E-06 
|11110> 6.79E-04 6.79E-04 -4.32934E-07 
|11111> 0.998638 0.998644 -5.63888E-06 

 sum = 1 sum = 1.000001 RMSE = 3.44959E-06 
 

5.0 CONCLUSIONS 
We were able to significantly improve the performance of Quantum eXpress by 
focusing our attention on optimizing the key operations performed by the 
simulator: large matrix multiplications.  By taking advantage of the structure of 
the matrices used, we were able to reduce both the number of calculations 
performed and the memory requirements.  A third benefit of the optimizations 
was the resulting operations naturally lent themselves to a parallelized 
evaluation, so we were able to distribute the simulator computation across a high 
performance computing cluster.  The optimizations and subsequent distribution 
across a cluster significantly improved the performance of the simulator.  Now, 
quantum algorithm researchers can use Quantum eXpress to exercise and 
quantify the performance of quantum algorithms with both decoherence and 
noise in an interactive environment. 
 
We were also able to enhance the simulator to calculate a step-by-step 
comparison of the ideal quantum algorithm execution to the actual (decoherence 
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and/or noise-affected) simulation.  These differences can be visualized as 
heatmaps in the enhanced Quantum eXpress graphical user interface, allowing 
researchers to better study the effects of errors and error propagation in a 
quantum system. 
 
We found that Quantum eXpress is capable of accurately modeling ion trap 
quantum computers.  Due to experimental limitations, we were unable to test all 
of the simulator’s capabilities (decoherence, qutrits, algorithms with four or more 
qubits, etc.), but it performed well compared to the most advanced publicly 
available experimental results.  In particular, compared to the ideal algorithms, 
and in the absence of noise, the simulator’s absolute probability errors were 
within 0.002%.  We also found that the simulator is more accurate than the 
experiments when decoherence and systematic errors in state preparation and 
measurement are not modeled.  We found that the simulation and experimental 
fidelities are comparable when gate noises of about 10% of the target application 
times are used. 
 
Finally, we were able to create an FPGA-based quantum accelerator that took 
advantage of the fine-grained parallelism that is present during quantum gate 
applications.  This yielded a significant speed-up in a 3-qubit algorithm and an 
even more substantial speed-up for a 5-qubit algorithm.  Additionally, the effects 
of simulating the quantum algorithms using single precision floating point was 
compared to simulating with double precision.  It was determined that the 
precision reduction in the data type had a negligible effect on the results of the 
two test cases. 

5.1 Proposed Future Work 
The major problem faced by Quantum eXpress or any density matrix-based 
simulation is the size of the representation of the quantum state, which is 22N.  
This manifests itself in three ways.  The first manifestation is in the amount of 
memory required to store the state and the amount of temporary memory 
required to compute the state update.  Second, it manifests itself in the time 
required to update the state.  The third manifestation is the volume of information 
generated during a simulation, which could be useful for debugging and 
understanding error correction strategies.  In this work we addressed the first two 
issues. 
 
The remaining execution time issue to be addressed is the efficient simulation of 
amplitude decoherence.  This represents a challenge because it does not 
maintain the locality demonstrated above for phase decoherence.  There is hope, 
however, because the resulting computation does exhibit a very well behaved 
non-local reference pattern. 
 
The next major challenge is posed by the development of tools for storing and 
examining the results of a simulation.  The volume of data generated during the 
running of even a simple quantum algorithm is astronomical.  The user will need 
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new tools to help in the identification of areas of interest and agile means for 
manipulating the data to bring those areas into view. 
 
The focus of the FPGA accelerator effort was on taking advantage of the fine-
grained parallelism inherent in the quantum gate application algorithm.  There is 
still a lot of room for improvement in terms of performance, however.  Most 
notably would be to create multiple execution kernels on the FPGA. 
 
In the current implementation, there is only one active execution kernel on the 
FPGA.  However, many more could be easily added.  The algorithm can be 
parallelized in the same way the distributed simulation was configured, by 
distributing portions of the density matrix and Hamiltonian over several nodes.  
This scheme would still hold on an FPGA-based architecture.  Each node could 
be a kernel running on an FPGA.  Additionally, this scheme could be used to 
span multiple FPGAs.  As long as each FPGA receives their portion of the 
density matrix there is no need for the kernels to all run on the same device. 
 
Using the distributed scheme across multiple FPGAs has the added benefit of 
being able to handle quantum systems that have a larger number of qubits.  The 
whole density matrix does not have to reside on a single FPGA, alleviating the 
memory constraints that limited the current implementation to simulations with 6 
qubits.  A design incorporating multiple FPGAs could allow us to simulate more 
qubits than possible using a cluster of conventional computing nodes. 
 
Finally, the FPGA design was only simulated—a natural next step would be to 
test this design on a physical field programmable gate array device. 
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Appendix A – FPGA Floating Point Formats 
A consequence of storing data in SRAM is that it must be stored as an IEEE754 
data type, shown in Figure 50.  IEEE754 is a standard 32 bit floating point data 
type.  This data type is also used for all data transfers between the FPGA and 
any external devices such as a host PC.  All floating point computations on the 
FPGA are performed using Nallatech's floating point cores, however, which use 
Nallatech's own 38-bit float type, also shown in Figure 50.  The slightly wider 
floating point type was designed to handle overflows that may occur during 
mathematical operations such as multiplications. 
 

 
Figure 50: Floating Point Formats 
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